Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| dARK ID: | ark:/26339/0013000016r49 |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Santa Maria
Brasil Engenharia Agrícola UFSM Programa de Pós-Graduação em Engenharia Agrícola Centro de Ciências Rurais |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://repositorio.ufsm.br/handle/1/17248 |
Resumo: | Freshwater reservoirs provide essential services to the population by providing drinking water for domestic, industrial, and agricultural use. In this way, finding appropriate means to manage this resource is vital for today's society. However, the collection of this information is an obstacle to high collection costs and difficult access to troubled areas. However, the use of remote sensing tools is potentially applicable for detection and monitoring of water bodies, overcoming the aforementioned problems. The objective of this work was to evaluate the use of remote sensing tools in the identification and determination of storage capacity of fresh water reservoirs for the municipalities of Alegrete, Itaqui, Quaraí and Uruguaiana in the State of Rio Grande do Sul, Brazil. Aiming at reaching the objectives proposed in the work, three situations were chosen for the choice of multispectral images, being these droughts, floods and periods of intense water use. Data from the OLI and MSI sensors (Landsat 8 and Sentinel-2B respectively) were analyzed and classified using ERDAS 2014® Software where by means of a 3x3 Laplacian filter the edge enhancement was facilitated, facilitating the delimitation of the reservoirs. The ArcScan tool in ArcGIS 10.4.1 for Desktop Advanced software was used for vectoring the targets. In contrast, elevation models SRTM and ALOS-PALSAR were also used for the identification / detection of the targets. Afterwards, the identified reservoirs were characterized, and it was possible to calculate the variables Area, Volume and Height of the reservoirs. Volumetric capacity and water availability were obtained for the study area. For the method of automatic identification of reservoirs using multispectral images, the data obtained with the Sentinel 2B-MSI image was the one that presented the best result for the study area, allowing the identification of 1.517 reservoirs, facilitating the identification of smaller reservoirs compared to Landsat 8 images - OLI. The ALOS PALSAR model identified 1.510 reservoirs for the study area, together with the identification of smaller reservoirs, compared to the SRTM model. The mean volume available in the study area was 2.5 billion cubic meters. The results obtained demonstrate the potential of the use of these remote sensing tools in the identification and characterization of water resources for the various purposes. Providing a useful tool to quantify available water in reservoirs, allowing managers, whether linked to agriculture or urban demand, to manage this resource in the best possible way. |
| id |
UFSM_bfe8f8d604e4100325b0e4cdebec2f3d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufsm.br:1/17248 |
| network_acronym_str |
UFSM |
| network_name_str |
Manancial - Repositório Digital da UFSM |
| repository_id_str |
|
| spelling |
Estimativa de armazenamento de água em reservatórios através de sensoriamento remotoEstimate of water storage in reservoirs through remote sensingDisponibilidade hídricaImagem multiespectralMDETINWater availabilityMultispectral imageCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAFreshwater reservoirs provide essential services to the population by providing drinking water for domestic, industrial, and agricultural use. In this way, finding appropriate means to manage this resource is vital for today's society. However, the collection of this information is an obstacle to high collection costs and difficult access to troubled areas. However, the use of remote sensing tools is potentially applicable for detection and monitoring of water bodies, overcoming the aforementioned problems. The objective of this work was to evaluate the use of remote sensing tools in the identification and determination of storage capacity of fresh water reservoirs for the municipalities of Alegrete, Itaqui, Quaraí and Uruguaiana in the State of Rio Grande do Sul, Brazil. Aiming at reaching the objectives proposed in the work, three situations were chosen for the choice of multispectral images, being these droughts, floods and periods of intense water use. Data from the OLI and MSI sensors (Landsat 8 and Sentinel-2B respectively) were analyzed and classified using ERDAS 2014® Software where by means of a 3x3 Laplacian filter the edge enhancement was facilitated, facilitating the delimitation of the reservoirs. The ArcScan tool in ArcGIS 10.4.1 for Desktop Advanced software was used for vectoring the targets. In contrast, elevation models SRTM and ALOS-PALSAR were also used for the identification / detection of the targets. Afterwards, the identified reservoirs were characterized, and it was possible to calculate the variables Area, Volume and Height of the reservoirs. Volumetric capacity and water availability were obtained for the study area. For the method of automatic identification of reservoirs using multispectral images, the data obtained with the Sentinel 2B-MSI image was the one that presented the best result for the study area, allowing the identification of 1.517 reservoirs, facilitating the identification of smaller reservoirs compared to Landsat 8 images - OLI. The ALOS PALSAR model identified 1.510 reservoirs for the study area, together with the identification of smaller reservoirs, compared to the SRTM model. The mean volume available in the study area was 2.5 billion cubic meters. The results obtained demonstrate the potential of the use of these remote sensing tools in the identification and characterization of water resources for the various purposes. Providing a useful tool to quantify available water in reservoirs, allowing managers, whether linked to agriculture or urban demand, to manage this resource in the best possible way.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqReservatórios de água doce fornecem serviços essenciais à população por meio do fornecimento de água potável, para uso doméstico, industrial, e uso agrícola. Dessa forma, encontrar meios adequados para o gerenciamento desse recurso é vital para sociedade atual. Porém o levantamento dessas informações esbarra nos elevados custos de coleta e na dificuldade de acesso as áreas. Entretanto, o uso de ferramentas do sensoriamento remoto mostra-se potencialmente aplicável para detecção e monitoramento de corpos de água, superando os problemas anteriormente citados. Dessa forma o trabalho objetivou avaliar o uso de ferramentas do sensoriamento remoto na identificação e determinação da capacidade de armazenamento de reservatórios de água doce para os municípios de Alegrete, Itaqui, Quaraí e Uruguaiana no Estado do Rio Grande do Sul - Brasil. Visando alcance dos desígnios propostos no trabalho, foram determinadas três situações para a escolha das imagens multiespectrais, sendo estas épocas de estiagem, cheias e períodos de uso intenso de água. Os dados dos sensores OLI e MSI (Landsat 8 e Sentinel-2B respectivamente) foram analisados e classificados utilizando Software ERDAS 2014® onde, por meio de filtro Laplaciano 3x3, obteve-se o realce de bordas facilitando a delimitação dos reservatórios. A ferramenta Arcscan do software ArcGIS 10.4.1 for Desktop Advanced foi utilizada para a vetorização dos alvos. Em contrapartida modelos de elevação SRTM e ALOS-PALSAR também foram utilizados para a identificação/detecção dos alvos. Posteriormente, foi procedido a caracterização dos reservatórios identificados, sendo possível calcular as variáveis Área, Volume e Profundidade dos reservatórios. Obteve-se assim a capacidade volumétrica e a disponibilidade de água para a área de estudo. Para o método de identificação automática de reservatórios utilizando imagens multiespectrais os dados obtidos com a imagem Sentinel 2B - MSI foi a que apresentou melhor resultado para área de estudo possibilitando a identificação de 1.517 reservatórios facilitando a identificação de reservatórios menores em comparação com as imagens Landsat 8 - OLI. Já para o método de detecção de reservatórios o modelo ALOS PALSAR identificou 1.510 reservatórios para a área de estudo, aliado a identificação de reservatórios de menor capacidade, em comparação com modelo SRTM. O volume médio disponível na área de estudo foi de 2.5 bilhões de metros cúbicos. Os resultados alcançados demonstram o potencial do uso de ferramentas de sensoriamento remoto na identificação e caracterização de recursos hídricos para os diversos fins. Constituindo uma ferramenta útil para quantificar a água disponível em reservatórios, permitindo que gestores, sejam eles ligados a agricultura ou a demanda urbana, possam gerir esse recurso da melhor forma possível.Universidade Federal de Santa MariaBrasilEngenharia AgrícolaUFSMPrograma de Pós-Graduação em Engenharia AgrícolaCentro de Ciências RuraisRobaina, Adroaldo Diashttp://lattes.cnpq.br/8629241691140049Pereira, Tonismar dos Santoshttp://lattes.cnpq.br/4636801615303022Miola, Alessandro Carvalhohttp://lattes.cnpq.br/6330335959668033Flores, Yesica Ramirez2019-07-02T13:24:33Z2019-07-02T13:24:33Z2019-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/17248ark:/26339/0013000016r49porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-07-03T06:01:08Zoai:repositorio.ufsm.br:1/17248Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2019-07-03T06:01:08Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
| dc.title.none.fl_str_mv |
Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto Estimate of water storage in reservoirs through remote sensing |
| title |
Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto |
| spellingShingle |
Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto Flores, Yesica Ramirez Disponibilidade hídrica Imagem multiespectral MDE TIN Water availability Multispectral image CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
| title_short |
Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto |
| title_full |
Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto |
| title_fullStr |
Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto |
| title_full_unstemmed |
Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto |
| title_sort |
Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto |
| author |
Flores, Yesica Ramirez |
| author_facet |
Flores, Yesica Ramirez |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Robaina, Adroaldo Dias http://lattes.cnpq.br/8629241691140049 Pereira, Tonismar dos Santos http://lattes.cnpq.br/4636801615303022 Miola, Alessandro Carvalho http://lattes.cnpq.br/6330335959668033 |
| dc.contributor.author.fl_str_mv |
Flores, Yesica Ramirez |
| dc.subject.por.fl_str_mv |
Disponibilidade hídrica Imagem multiespectral MDE TIN Water availability Multispectral image CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
| topic |
Disponibilidade hídrica Imagem multiespectral MDE TIN Water availability Multispectral image CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA |
| description |
Freshwater reservoirs provide essential services to the population by providing drinking water for domestic, industrial, and agricultural use. In this way, finding appropriate means to manage this resource is vital for today's society. However, the collection of this information is an obstacle to high collection costs and difficult access to troubled areas. However, the use of remote sensing tools is potentially applicable for detection and monitoring of water bodies, overcoming the aforementioned problems. The objective of this work was to evaluate the use of remote sensing tools in the identification and determination of storage capacity of fresh water reservoirs for the municipalities of Alegrete, Itaqui, Quaraí and Uruguaiana in the State of Rio Grande do Sul, Brazil. Aiming at reaching the objectives proposed in the work, three situations were chosen for the choice of multispectral images, being these droughts, floods and periods of intense water use. Data from the OLI and MSI sensors (Landsat 8 and Sentinel-2B respectively) were analyzed and classified using ERDAS 2014® Software where by means of a 3x3 Laplacian filter the edge enhancement was facilitated, facilitating the delimitation of the reservoirs. The ArcScan tool in ArcGIS 10.4.1 for Desktop Advanced software was used for vectoring the targets. In contrast, elevation models SRTM and ALOS-PALSAR were also used for the identification / detection of the targets. Afterwards, the identified reservoirs were characterized, and it was possible to calculate the variables Area, Volume and Height of the reservoirs. Volumetric capacity and water availability were obtained for the study area. For the method of automatic identification of reservoirs using multispectral images, the data obtained with the Sentinel 2B-MSI image was the one that presented the best result for the study area, allowing the identification of 1.517 reservoirs, facilitating the identification of smaller reservoirs compared to Landsat 8 images - OLI. The ALOS PALSAR model identified 1.510 reservoirs for the study area, together with the identification of smaller reservoirs, compared to the SRTM model. The mean volume available in the study area was 2.5 billion cubic meters. The results obtained demonstrate the potential of the use of these remote sensing tools in the identification and characterization of water resources for the various purposes. Providing a useful tool to quantify available water in reservoirs, allowing managers, whether linked to agriculture or urban demand, to manage this resource in the best possible way. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-07-02T13:24:33Z 2019-07-02T13:24:33Z 2019-02-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/17248 |
| dc.identifier.dark.fl_str_mv |
ark:/26339/0013000016r49 |
| url |
http://repositorio.ufsm.br/handle/1/17248 |
| identifier_str_mv |
ark:/26339/0013000016r49 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Agrícola UFSM Programa de Pós-Graduação em Engenharia Agrícola Centro de Ciências Rurais |
| publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Agrícola UFSM Programa de Pós-Graduação em Engenharia Agrícola Centro de Ciências Rurais |
| dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
| instname_str |
Universidade Federal de Santa Maria (UFSM) |
| instacron_str |
UFSM |
| institution |
UFSM |
| reponame_str |
Manancial - Repositório Digital da UFSM |
| collection |
Manancial - Repositório Digital da UFSM |
| repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
| repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br |
| _version_ |
1847153503226560512 |