Exportação concluída — 

Network optimization based on Genetic Algorithms for high-level classification via complex networks

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Fernandes, Janayna
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
ASD
Link de acesso: https://repositorio.ufu.br/handle/123456789/37911
http://doi.org/10.14393/ufu.di.2023.146
Resumo: Network-based classification has demonstrated its value especially due to its inherent capacity to capture the properties of networked data (e.g., structural and dynamical). However, its performance depends heavily on the network architecture. In this sense, we present a method for optimizing network architecture using genetic algorithms (GAs) for the classification via characterization of importance. The importance based classification is a recent network classification technique that employs the pagerank measure to capture the underlying data relationship. In particular, we hypothesize that the prominent characteristics of GAs, such as their robust search mechanism and binary representation, may provide a more effective network architecture. Further, in an effort to capture the relationships between the networked data, we also analyze, despite pagerank, other network measures, namely degree, betweenness, closeness, and shortest path length. In summary, experimental findings using real data sets demonstrated that the proposed algorithm outperforms the widely used k-nearest neighbors graph method in terms of classification accuracy. They also show competitive results against a state-of-the-art network optimization technique based on swarm intelligence. Meanwhile, for the network measures, results revealed that pagerank and degree produced the best outcomes and statistically outperformed all other network measures in terms of predictive capability and robustness. Our technique was also applied to the detection of autism spectrum disorder from salivary data processed by the attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. In the experiments, GA outperformed both linear discriminant analysis, a widely adopted technique in ATR-FTIR analysis, and support vector machine, a state-of-the art technique for such problems. Moreover, these results give evidence about the potential of our approach in dealing with such a difficult problem, characterized by high-dimensional data and arbitrary distributions.
id UFU_4708ef0b19cb4c77381e55fb4a5cf99c
oai_identifier_str oai:repositorio.ufu.br:123456789/37911
network_acronym_str UFU
network_name_str Repositório Institucional da UFU
repository_id_str
spelling Network optimization based on Genetic Algorithms for high-level classification via complex networksOtimização de redes baseada em Algoritmos Genéticos para classificação de alto nível via redes complexasComplex NetworksGenetic AlgorithmsNetwork OptimizationData ClassificationGraph constructionGraph OptimizationASDAutismATR-FTIRCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOComputaçãoNetwork-based classification has demonstrated its value especially due to its inherent capacity to capture the properties of networked data (e.g., structural and dynamical). However, its performance depends heavily on the network architecture. In this sense, we present a method for optimizing network architecture using genetic algorithms (GAs) for the classification via characterization of importance. The importance based classification is a recent network classification technique that employs the pagerank measure to capture the underlying data relationship. In particular, we hypothesize that the prominent characteristics of GAs, such as their robust search mechanism and binary representation, may provide a more effective network architecture. Further, in an effort to capture the relationships between the networked data, we also analyze, despite pagerank, other network measures, namely degree, betweenness, closeness, and shortest path length. In summary, experimental findings using real data sets demonstrated that the proposed algorithm outperforms the widely used k-nearest neighbors graph method in terms of classification accuracy. They also show competitive results against a state-of-the-art network optimization technique based on swarm intelligence. Meanwhile, for the network measures, results revealed that pagerank and degree produced the best outcomes and statistically outperformed all other network measures in terms of predictive capability and robustness. Our technique was also applied to the detection of autism spectrum disorder from salivary data processed by the attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. In the experiments, GA outperformed both linear discriminant analysis, a widely adopted technique in ATR-FTIR analysis, and support vector machine, a state-of-the art technique for such problems. Moreover, these results give evidence about the potential of our approach in dealing with such a difficult problem, characterized by high-dimensional data and arbitrary distributions.Dissertação (Mestrado)A classificação baseada em rede tem demonstrado seu valor, especialmente devido à sua capacidade inerente de capturar as propriedades dos dados em rede (por exemplo, estruturais e dinâmicas). No entanto, seu desempenho é altamente dependente da estrutura da rede. Nesse sentido, apresentamos GANet, uma técnica para otimização estrutural de redes baseada em algoritmos genéticos (AGs) para a classificação via caracterização de importância. A classificação baseada em importância é uma técnica de classificação de rede recente que utiliza da medida do pagerank para capturar as relações subjacentes dos dados. Em particular, hipotetizamos que as características proeminentes dos AGs, como seu robusto mecanismo de busca e sua representação binária, podem fornecer uma estrutura de rede mais efetiva. Além disso, em um esforço para capturar as relações entre os dados em rede, também analisamos, além do pagerank, outras medidas de rede, como grau, intermediação, proximidade e comprimento do caminho mais curto. Em resumo, descobertas experimentais usando conjuntos de dados reais demonstraram que o algoritmo proposto supera o método de construção de grafo k-vizinhos mais próximos, amplamente adotado na literatura, em termos de acurácia de classificação. Também foram encontrados resultados competitivos em relação à técnica de otimização de rede baseada em inteligência de enxame. Enquanto isso, para as medidas de rede, os resultados revelaram que o pagerank e o grau produziram os melhores resultados e superaram estatisticamente todas as outras medidas de rede em termos de capacidade preditiva e robustez. Nossa técnica também foi aplicada à detecção de transtorno do espectro autista a partir de amostras de saliva de pacientes processadas por espectroscopia de infravermelho por transformada de Fourier com reflectância total atenuada (ATR-FTIR). Nos experimentos, GANet superou tanto análise discriminante linear, uma técnica amplamente adotada na análise ATR-FTIR, quanto máquina de vetor de suporte, uma técnica do estado-da-arte para tais problemas. Além disso, esses resultados fornecem evidências sobre o potencial de nossa abordagem para lidar com um problema tão difícil, caracterizado por dados de alta dimensão e distribuições arbitrárias.2025-03-01Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Ciência da ComputaçãoOliveira, Gina Maira Barbosa dehttp://lattes.cnpq.br/7119433066704111Carneiro, Murillo Guimarãeshttp://lattes.cnpq.br/8158868389973535Gabriel, Paulo Henrique Ribeirohttp://lattes.cnpq.br/3181954061121790Breve, Fabricio Aparecidohttp://lattes.cnpq.br/5693860025538327Fernandes, Janayna2023-05-25T21:07:35Z2023-05-25T21:07:35Z2023-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFERNANDES, Janayna Moura. Network optimization based on Genetic Algorithms for high-level classification via complex networks. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.146https://repositorio.ufu.br/handle/123456789/37911http://doi.org/10.14393/ufu.di.2023.146enghttp://creativecommons.org/licenses/by-nc/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2023-05-31T18:37:34Zoai:repositorio.ufu.br:123456789/37911Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2023-05-31T18:37:34Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false
dc.title.none.fl_str_mv Network optimization based on Genetic Algorithms for high-level classification via complex networks
Otimização de redes baseada em Algoritmos Genéticos para classificação de alto nível via redes complexas
title Network optimization based on Genetic Algorithms for high-level classification via complex networks
spellingShingle Network optimization based on Genetic Algorithms for high-level classification via complex networks
Fernandes, Janayna
Complex Networks
Genetic Algorithms
Network Optimization
Data Classification
Graph construction
Graph Optimization
ASD
Autism
ATR-FTIR
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
Computação
title_short Network optimization based on Genetic Algorithms for high-level classification via complex networks
title_full Network optimization based on Genetic Algorithms for high-level classification via complex networks
title_fullStr Network optimization based on Genetic Algorithms for high-level classification via complex networks
title_full_unstemmed Network optimization based on Genetic Algorithms for high-level classification via complex networks
title_sort Network optimization based on Genetic Algorithms for high-level classification via complex networks
author Fernandes, Janayna
author_facet Fernandes, Janayna
author_role author
dc.contributor.none.fl_str_mv Oliveira, Gina Maira Barbosa de
http://lattes.cnpq.br/7119433066704111
Carneiro, Murillo Guimarães
http://lattes.cnpq.br/8158868389973535
Gabriel, Paulo Henrique Ribeiro
http://lattes.cnpq.br/3181954061121790
Breve, Fabricio Aparecido
http://lattes.cnpq.br/5693860025538327
dc.contributor.author.fl_str_mv Fernandes, Janayna
dc.subject.por.fl_str_mv Complex Networks
Genetic Algorithms
Network Optimization
Data Classification
Graph construction
Graph Optimization
ASD
Autism
ATR-FTIR
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
Computação
topic Complex Networks
Genetic Algorithms
Network Optimization
Data Classification
Graph construction
Graph Optimization
ASD
Autism
ATR-FTIR
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
Computação
description Network-based classification has demonstrated its value especially due to its inherent capacity to capture the properties of networked data (e.g., structural and dynamical). However, its performance depends heavily on the network architecture. In this sense, we present a method for optimizing network architecture using genetic algorithms (GAs) for the classification via characterization of importance. The importance based classification is a recent network classification technique that employs the pagerank measure to capture the underlying data relationship. In particular, we hypothesize that the prominent characteristics of GAs, such as their robust search mechanism and binary representation, may provide a more effective network architecture. Further, in an effort to capture the relationships between the networked data, we also analyze, despite pagerank, other network measures, namely degree, betweenness, closeness, and shortest path length. In summary, experimental findings using real data sets demonstrated that the proposed algorithm outperforms the widely used k-nearest neighbors graph method in terms of classification accuracy. They also show competitive results against a state-of-the-art network optimization technique based on swarm intelligence. Meanwhile, for the network measures, results revealed that pagerank and degree produced the best outcomes and statistically outperformed all other network measures in terms of predictive capability and robustness. Our technique was also applied to the detection of autism spectrum disorder from salivary data processed by the attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. In the experiments, GA outperformed both linear discriminant analysis, a widely adopted technique in ATR-FTIR analysis, and support vector machine, a state-of-the art technique for such problems. Moreover, these results give evidence about the potential of our approach in dealing with such a difficult problem, characterized by high-dimensional data and arbitrary distributions.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-25T21:07:35Z
2023-05-25T21:07:35Z
2023-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERNANDES, Janayna Moura. Network optimization based on Genetic Algorithms for high-level classification via complex networks. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.146
https://repositorio.ufu.br/handle/123456789/37911
http://doi.org/10.14393/ufu.di.2023.146
identifier_str_mv FERNANDES, Janayna Moura. Network optimization based on Genetic Algorithms for high-level classification via complex networks. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.146
url https://repositorio.ufu.br/handle/123456789/37911
http://doi.org/10.14393/ufu.di.2023.146
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc/3.0/us/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/us/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
publisher.none.fl_str_mv Universidade Federal de Uberlândia
Brasil
Programa de Pós-graduação em Ciência da Computação
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFU
instname:Universidade Federal de Uberlândia (UFU)
instacron:UFU
instname_str Universidade Federal de Uberlândia (UFU)
instacron_str UFU
institution UFU
reponame_str Repositório Institucional da UFU
collection Repositório Institucional da UFU
repository.name.fl_str_mv Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)
repository.mail.fl_str_mv diinf@dirbi.ufu.br
_version_ 1827843509059584000