Network optimization based on Genetic Algorithms for high-level classification via complex networks
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Uberlândia
Brasil Programa de Pós-graduação em Ciência da Computação |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufu.br/handle/123456789/37911 http://doi.org/10.14393/ufu.di.2023.146 |
Resumo: | Network-based classification has demonstrated its value especially due to its inherent capacity to capture the properties of networked data (e.g., structural and dynamical). However, its performance depends heavily on the network architecture. In this sense, we present a method for optimizing network architecture using genetic algorithms (GAs) for the classification via characterization of importance. The importance based classification is a recent network classification technique that employs the pagerank measure to capture the underlying data relationship. In particular, we hypothesize that the prominent characteristics of GAs, such as their robust search mechanism and binary representation, may provide a more effective network architecture. Further, in an effort to capture the relationships between the networked data, we also analyze, despite pagerank, other network measures, namely degree, betweenness, closeness, and shortest path length. In summary, experimental findings using real data sets demonstrated that the proposed algorithm outperforms the widely used k-nearest neighbors graph method in terms of classification accuracy. They also show competitive results against a state-of-the-art network optimization technique based on swarm intelligence. Meanwhile, for the network measures, results revealed that pagerank and degree produced the best outcomes and statistically outperformed all other network measures in terms of predictive capability and robustness. Our technique was also applied to the detection of autism spectrum disorder from salivary data processed by the attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. In the experiments, GA outperformed both linear discriminant analysis, a widely adopted technique in ATR-FTIR analysis, and support vector machine, a state-of-the art technique for such problems. Moreover, these results give evidence about the potential of our approach in dealing with such a difficult problem, characterized by high-dimensional data and arbitrary distributions. |
| id |
UFU_4708ef0b19cb4c77381e55fb4a5cf99c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufu.br:123456789/37911 |
| network_acronym_str |
UFU |
| network_name_str |
Repositório Institucional da UFU |
| repository_id_str |
|
| spelling |
Network optimization based on Genetic Algorithms for high-level classification via complex networksOtimização de redes baseada em Algoritmos Genéticos para classificação de alto nível via redes complexasComplex NetworksGenetic AlgorithmsNetwork OptimizationData ClassificationGraph constructionGraph OptimizationASDAutismATR-FTIRCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOComputaçãoNetwork-based classification has demonstrated its value especially due to its inherent capacity to capture the properties of networked data (e.g., structural and dynamical). However, its performance depends heavily on the network architecture. In this sense, we present a method for optimizing network architecture using genetic algorithms (GAs) for the classification via characterization of importance. The importance based classification is a recent network classification technique that employs the pagerank measure to capture the underlying data relationship. In particular, we hypothesize that the prominent characteristics of GAs, such as their robust search mechanism and binary representation, may provide a more effective network architecture. Further, in an effort to capture the relationships between the networked data, we also analyze, despite pagerank, other network measures, namely degree, betweenness, closeness, and shortest path length. In summary, experimental findings using real data sets demonstrated that the proposed algorithm outperforms the widely used k-nearest neighbors graph method in terms of classification accuracy. They also show competitive results against a state-of-the-art network optimization technique based on swarm intelligence. Meanwhile, for the network measures, results revealed that pagerank and degree produced the best outcomes and statistically outperformed all other network measures in terms of predictive capability and robustness. Our technique was also applied to the detection of autism spectrum disorder from salivary data processed by the attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. In the experiments, GA outperformed both linear discriminant analysis, a widely adopted technique in ATR-FTIR analysis, and support vector machine, a state-of-the art technique for such problems. Moreover, these results give evidence about the potential of our approach in dealing with such a difficult problem, characterized by high-dimensional data and arbitrary distributions.Dissertação (Mestrado)A classificação baseada em rede tem demonstrado seu valor, especialmente devido à sua capacidade inerente de capturar as propriedades dos dados em rede (por exemplo, estruturais e dinâmicas). No entanto, seu desempenho é altamente dependente da estrutura da rede. Nesse sentido, apresentamos GANet, uma técnica para otimização estrutural de redes baseada em algoritmos genéticos (AGs) para a classificação via caracterização de importância. A classificação baseada em importância é uma técnica de classificação de rede recente que utiliza da medida do pagerank para capturar as relações subjacentes dos dados. Em particular, hipotetizamos que as características proeminentes dos AGs, como seu robusto mecanismo de busca e sua representação binária, podem fornecer uma estrutura de rede mais efetiva. Além disso, em um esforço para capturar as relações entre os dados em rede, também analisamos, além do pagerank, outras medidas de rede, como grau, intermediação, proximidade e comprimento do caminho mais curto. Em resumo, descobertas experimentais usando conjuntos de dados reais demonstraram que o algoritmo proposto supera o método de construção de grafo k-vizinhos mais próximos, amplamente adotado na literatura, em termos de acurácia de classificação. Também foram encontrados resultados competitivos em relação à técnica de otimização de rede baseada em inteligência de enxame. Enquanto isso, para as medidas de rede, os resultados revelaram que o pagerank e o grau produziram os melhores resultados e superaram estatisticamente todas as outras medidas de rede em termos de capacidade preditiva e robustez. Nossa técnica também foi aplicada à detecção de transtorno do espectro autista a partir de amostras de saliva de pacientes processadas por espectroscopia de infravermelho por transformada de Fourier com reflectância total atenuada (ATR-FTIR). Nos experimentos, GANet superou tanto análise discriminante linear, uma técnica amplamente adotada na análise ATR-FTIR, quanto máquina de vetor de suporte, uma técnica do estado-da-arte para tais problemas. Além disso, esses resultados fornecem evidências sobre o potencial de nossa abordagem para lidar com um problema tão difícil, caracterizado por dados de alta dimensão e distribuições arbitrárias.2025-03-01Universidade Federal de UberlândiaBrasilPrograma de Pós-graduação em Ciência da ComputaçãoOliveira, Gina Maira Barbosa dehttp://lattes.cnpq.br/7119433066704111Carneiro, Murillo Guimarãeshttp://lattes.cnpq.br/8158868389973535Gabriel, Paulo Henrique Ribeirohttp://lattes.cnpq.br/3181954061121790Breve, Fabricio Aparecidohttp://lattes.cnpq.br/5693860025538327Fernandes, Janayna2023-05-25T21:07:35Z2023-05-25T21:07:35Z2023-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfFERNANDES, Janayna Moura. Network optimization based on Genetic Algorithms for high-level classification via complex networks. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.146https://repositorio.ufu.br/handle/123456789/37911http://doi.org/10.14393/ufu.di.2023.146enghttp://creativecommons.org/licenses/by-nc/3.0/us/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFUinstname:Universidade Federal de Uberlândia (UFU)instacron:UFU2023-05-31T18:37:34Zoai:repositorio.ufu.br:123456789/37911Repositório InstitucionalONGhttp://repositorio.ufu.br/oai/requestdiinf@dirbi.ufu.bropendoar:2023-05-31T18:37:34Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU)false |
| dc.title.none.fl_str_mv |
Network optimization based on Genetic Algorithms for high-level classification via complex networks Otimização de redes baseada em Algoritmos Genéticos para classificação de alto nível via redes complexas |
| title |
Network optimization based on Genetic Algorithms for high-level classification via complex networks |
| spellingShingle |
Network optimization based on Genetic Algorithms for high-level classification via complex networks Fernandes, Janayna Complex Networks Genetic Algorithms Network Optimization Data Classification Graph construction Graph Optimization ASD Autism ATR-FTIR CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO Computação |
| title_short |
Network optimization based on Genetic Algorithms for high-level classification via complex networks |
| title_full |
Network optimization based on Genetic Algorithms for high-level classification via complex networks |
| title_fullStr |
Network optimization based on Genetic Algorithms for high-level classification via complex networks |
| title_full_unstemmed |
Network optimization based on Genetic Algorithms for high-level classification via complex networks |
| title_sort |
Network optimization based on Genetic Algorithms for high-level classification via complex networks |
| author |
Fernandes, Janayna |
| author_facet |
Fernandes, Janayna |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Oliveira, Gina Maira Barbosa de http://lattes.cnpq.br/7119433066704111 Carneiro, Murillo Guimarães http://lattes.cnpq.br/8158868389973535 Gabriel, Paulo Henrique Ribeiro http://lattes.cnpq.br/3181954061121790 Breve, Fabricio Aparecido http://lattes.cnpq.br/5693860025538327 |
| dc.contributor.author.fl_str_mv |
Fernandes, Janayna |
| dc.subject.por.fl_str_mv |
Complex Networks Genetic Algorithms Network Optimization Data Classification Graph construction Graph Optimization ASD Autism ATR-FTIR CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO Computação |
| topic |
Complex Networks Genetic Algorithms Network Optimization Data Classification Graph construction Graph Optimization ASD Autism ATR-FTIR CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO Computação |
| description |
Network-based classification has demonstrated its value especially due to its inherent capacity to capture the properties of networked data (e.g., structural and dynamical). However, its performance depends heavily on the network architecture. In this sense, we present a method for optimizing network architecture using genetic algorithms (GAs) for the classification via characterization of importance. The importance based classification is a recent network classification technique that employs the pagerank measure to capture the underlying data relationship. In particular, we hypothesize that the prominent characteristics of GAs, such as their robust search mechanism and binary representation, may provide a more effective network architecture. Further, in an effort to capture the relationships between the networked data, we also analyze, despite pagerank, other network measures, namely degree, betweenness, closeness, and shortest path length. In summary, experimental findings using real data sets demonstrated that the proposed algorithm outperforms the widely used k-nearest neighbors graph method in terms of classification accuracy. They also show competitive results against a state-of-the-art network optimization technique based on swarm intelligence. Meanwhile, for the network measures, results revealed that pagerank and degree produced the best outcomes and statistically outperformed all other network measures in terms of predictive capability and robustness. Our technique was also applied to the detection of autism spectrum disorder from salivary data processed by the attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy. In the experiments, GA outperformed both linear discriminant analysis, a widely adopted technique in ATR-FTIR analysis, and support vector machine, a state-of-the art technique for such problems. Moreover, these results give evidence about the potential of our approach in dealing with such a difficult problem, characterized by high-dimensional data and arbitrary distributions. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-05-25T21:07:35Z 2023-05-25T21:07:35Z 2023-03-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
FERNANDES, Janayna Moura. Network optimization based on Genetic Algorithms for high-level classification via complex networks. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.146 https://repositorio.ufu.br/handle/123456789/37911 http://doi.org/10.14393/ufu.di.2023.146 |
| identifier_str_mv |
FERNANDES, Janayna Moura. Network optimization based on Genetic Algorithms for high-level classification via complex networks. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Uberlândia, Uberlândia, 2023. DOI http://doi.org/10.14393/ufu.di.2023.146 |
| url |
https://repositorio.ufu.br/handle/123456789/37911 http://doi.org/10.14393/ufu.di.2023.146 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/us/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/us/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Ciência da Computação |
| publisher.none.fl_str_mv |
Universidade Federal de Uberlândia Brasil Programa de Pós-graduação em Ciência da Computação |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFU instname:Universidade Federal de Uberlândia (UFU) instacron:UFU |
| instname_str |
Universidade Federal de Uberlândia (UFU) |
| instacron_str |
UFU |
| institution |
UFU |
| reponame_str |
Repositório Institucional da UFU |
| collection |
Repositório Institucional da UFU |
| repository.name.fl_str_mv |
Repositório Institucional da UFU - Universidade Federal de Uberlândia (UFU) |
| repository.mail.fl_str_mv |
diinf@dirbi.ufu.br |
| _version_ |
1827843509059584000 |