Multi-scale analysis of weather data for building performance assessment in Brazil

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Silva, Mario Alves da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Viçosa
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://locus.ufv.br/handle/123456789/33575
https://doi.org/10.47328/ufvbbt.2025.024
Resumo: The choice of weather data is fundamental for assessing building performance in an accurate and representative way. Typical weather files usually apply a statistical approach to select months representative of current climatic conditions, but they do not encompass site-specific characteristics for different locations worldwide. This work analyses the potential of a multi-scale analysis for building performance assessment from different resolutions of weather data, in a comprehensive geographical territory, given the size of Brazil. It presents an overview of weather data and its application on building performance analysis and a general procedure to retrieve and process weather data, and different approaches to compile weather files for building performance assessment. The study also provides an extensive analysis of the Brazilian territory, presenting a climatic profile and trends for the entire territory. The analysis focuses on a climatic and bioclimatic summary, and on building performance simulations for representative cities according to the Brazilian bioclimatic zoning. Then, it compares the records from ERA5-Land and INMET to quantify the differences and present the impact on building performance analysis. The study proposes a new weather file compilation method for Brazil and applies statistical tests to determine whether the new approach delivers better results than the existing TMY methods. The procedure encompasses correlation and sensitivity analysis based on machine learning models to propose a performance-based method. The initial analysis of the Brazilian territory showed predominantly a temperature increase based on the 2008-2022 records, with some locations reaching more than 1 °C. However, the bioclimatic approach based on Givoni’s chart showed that ventilation strategies are still the most effective approach instead of HVAC systems. Following the comparison between high resolution spatial data and weather stations from Brazil, some locations present insufficient years for a multi-year analysis and some municipalities show a significant variation not only of weather data, but also of the building performance results. Finally, the analysis of new weather files for Brazil allowed concluding that creating typical year weather files based on a performance approach delivers the best outcomes, since they are closer to the historical records. Keywords: climate analysis; building performance simulation; weather files; machine learning
id UFV_3dcb2f354d855c63a4c2a0b05fb45392
oai_identifier_str oai:locus.ufv.br:123456789/33575
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str
spelling Multi-scale analysis of weather data for building performance assessment in BrazilAnálise multiescala de dados climáticos para avaliação de desempenho de edificações no BrasilEdifícios - Engenharia ambientalArquitetura e climaMeteorologia - Métodos estatísticosAprendizado do computadorCIENCIAS SOCIAIS APLICADAS::ARQUITETURA E URBANISMO::TECNOLOGIA DE ARQUITETURA E URBANISMOThe choice of weather data is fundamental for assessing building performance in an accurate and representative way. Typical weather files usually apply a statistical approach to select months representative of current climatic conditions, but they do not encompass site-specific characteristics for different locations worldwide. This work analyses the potential of a multi-scale analysis for building performance assessment from different resolutions of weather data, in a comprehensive geographical territory, given the size of Brazil. It presents an overview of weather data and its application on building performance analysis and a general procedure to retrieve and process weather data, and different approaches to compile weather files for building performance assessment. The study also provides an extensive analysis of the Brazilian territory, presenting a climatic profile and trends for the entire territory. The analysis focuses on a climatic and bioclimatic summary, and on building performance simulations for representative cities according to the Brazilian bioclimatic zoning. Then, it compares the records from ERA5-Land and INMET to quantify the differences and present the impact on building performance analysis. The study proposes a new weather file compilation method for Brazil and applies statistical tests to determine whether the new approach delivers better results than the existing TMY methods. The procedure encompasses correlation and sensitivity analysis based on machine learning models to propose a performance-based method. The initial analysis of the Brazilian territory showed predominantly a temperature increase based on the 2008-2022 records, with some locations reaching more than 1 °C. However, the bioclimatic approach based on Givoni’s chart showed that ventilation strategies are still the most effective approach instead of HVAC systems. Following the comparison between high resolution spatial data and weather stations from Brazil, some locations present insufficient years for a multi-year analysis and some municipalities show a significant variation not only of weather data, but also of the building performance results. Finally, the analysis of new weather files for Brazil allowed concluding that creating typical year weather files based on a performance approach delivers the best outcomes, since they are closer to the historical records. Keywords: climate analysis; building performance simulation; weather files; machine learningA escolha de dados meteorológicos é fundamental para avaliar o desempenho de edifícios de forma precisa e representativa. Arquivos climáticos típicos geralmente aplicam uma abordagem estatística para selecionar meses representativos das condições climáticas atuais, mas não abrangem características específicas do local para diferentes locais no mundo. Este trabalho analisa o potencial de uma análise multiescala para avaliação de desempenho de edifícios a partir de diferentes resoluções de dados meteorológicos, em um território geográfico abrangente, dado o tamanho do Brasil. O trabalho apresenta uma visão geral dos dados meteorológicos e sua aplicação na análise de desempenho de edifícios e um procedimento geral para coletar e processar dados meteorológicos, e diferentes abordagens para compilar arquivos climáticos para avaliação de desempenho de edifícios. O estudo também fornece uma análise extensa do território brasileiro, apresentando um perfil climático e tendências para todo o território. A análise se concentra em um resumo climático e bioclimático e em simulações de desempenho para cidades representativas de acordo com o zoneamento bioclimático brasileiro. Em seguida, o trabalho compara os registros da base de dados ERA5-Land e do INMET para quantificar as diferenças e apresentar o impacto na análise de desempenho de edifícios. O estudo propõe um novo método de compilação de arquivos climáticos para o Brasil e aplica testes estatísticos para determinar se a nova abordagem fornece melhores resultados do que os métodos TMY existentes. O procedimento abrange análise de correlação e sensibilidade com base em modelos de aprendizado de máquina para propor um método baseado em desempenho. A análise inicial do território brasileiro mostrou predominantemente um aumento de temperatura com base nos registros de 2008-2022, com alguns locais atingindo mais de 1 °C. No entanto, a abordagem bioclimática com base no diagrama de Givoni mostrou que as estratégias de ventilação ainda são a abordagem mais eficaz em vez dos sistemas HVAC. Após a comparação entre dados espaciais de alta resolução e estações meteorológicas do Brasil, alguns locais apresentam anos insuficientes para uma análise multianual e alguns municípios mostram uma variação significativa não apenas dos dados meteorológicos, mas também dos resultados de desempenho do edifício. Finalmente, a análise de novos arquivos climáticos para o Brasil permitiu concluir que a criação de arquivos climáticos típicos com base em uma abordagem de desempenho fornece os melhores resultados, uma vez que estão mais próximos dos registros históricos. Palavras-chave: análise climática; simulação de desempenho de edificações; arquivos climáticos; aprendizado de máquinaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Universidade Federal de ViçosaCarlo, Joyce Correnahttp://lattes.cnpq.br/7410328084280746Silva, Mario Alves da2025-02-03T11:02:01Z2024-11-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSILVA, Mario Alves da. Multi-scale analysis of weather data for building performance assessment in Brazil. 2024. 130 f. Tese (Doutorado em Arquitetura e Urbanismo) - Universidade Federal de Viçosa, Viçosa. 2024.https://locus.ufv.br/handle/123456789/33575https://doi.org/10.47328/ufvbbt.2025.024enginfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2025-02-04T06:01:19Zoai:locus.ufv.br:123456789/33575Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452025-02-04T06:01:19LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Multi-scale analysis of weather data for building performance assessment in Brazil
Análise multiescala de dados climáticos para avaliação de desempenho de edificações no Brasil
title Multi-scale analysis of weather data for building performance assessment in Brazil
spellingShingle Multi-scale analysis of weather data for building performance assessment in Brazil
Silva, Mario Alves da
Edifícios - Engenharia ambiental
Arquitetura e clima
Meteorologia - Métodos estatísticos
Aprendizado do computador
CIENCIAS SOCIAIS APLICADAS::ARQUITETURA E URBANISMO::TECNOLOGIA DE ARQUITETURA E URBANISMO
title_short Multi-scale analysis of weather data for building performance assessment in Brazil
title_full Multi-scale analysis of weather data for building performance assessment in Brazil
title_fullStr Multi-scale analysis of weather data for building performance assessment in Brazil
title_full_unstemmed Multi-scale analysis of weather data for building performance assessment in Brazil
title_sort Multi-scale analysis of weather data for building performance assessment in Brazil
author Silva, Mario Alves da
author_facet Silva, Mario Alves da
author_role author
dc.contributor.none.fl_str_mv Carlo, Joyce Correna
http://lattes.cnpq.br/7410328084280746
dc.contributor.author.fl_str_mv Silva, Mario Alves da
dc.subject.por.fl_str_mv Edifícios - Engenharia ambiental
Arquitetura e clima
Meteorologia - Métodos estatísticos
Aprendizado do computador
CIENCIAS SOCIAIS APLICADAS::ARQUITETURA E URBANISMO::TECNOLOGIA DE ARQUITETURA E URBANISMO
topic Edifícios - Engenharia ambiental
Arquitetura e clima
Meteorologia - Métodos estatísticos
Aprendizado do computador
CIENCIAS SOCIAIS APLICADAS::ARQUITETURA E URBANISMO::TECNOLOGIA DE ARQUITETURA E URBANISMO
description The choice of weather data is fundamental for assessing building performance in an accurate and representative way. Typical weather files usually apply a statistical approach to select months representative of current climatic conditions, but they do not encompass site-specific characteristics for different locations worldwide. This work analyses the potential of a multi-scale analysis for building performance assessment from different resolutions of weather data, in a comprehensive geographical territory, given the size of Brazil. It presents an overview of weather data and its application on building performance analysis and a general procedure to retrieve and process weather data, and different approaches to compile weather files for building performance assessment. The study also provides an extensive analysis of the Brazilian territory, presenting a climatic profile and trends for the entire territory. The analysis focuses on a climatic and bioclimatic summary, and on building performance simulations for representative cities according to the Brazilian bioclimatic zoning. Then, it compares the records from ERA5-Land and INMET to quantify the differences and present the impact on building performance analysis. The study proposes a new weather file compilation method for Brazil and applies statistical tests to determine whether the new approach delivers better results than the existing TMY methods. The procedure encompasses correlation and sensitivity analysis based on machine learning models to propose a performance-based method. The initial analysis of the Brazilian territory showed predominantly a temperature increase based on the 2008-2022 records, with some locations reaching more than 1 °C. However, the bioclimatic approach based on Givoni’s chart showed that ventilation strategies are still the most effective approach instead of HVAC systems. Following the comparison between high resolution spatial data and weather stations from Brazil, some locations present insufficient years for a multi-year analysis and some municipalities show a significant variation not only of weather data, but also of the building performance results. Finally, the analysis of new weather files for Brazil allowed concluding that creating typical year weather files based on a performance approach delivers the best outcomes, since they are closer to the historical records. Keywords: climate analysis; building performance simulation; weather files; machine learning
publishDate 2024
dc.date.none.fl_str_mv 2024-11-29
2025-02-03T11:02:01Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, Mario Alves da. Multi-scale analysis of weather data for building performance assessment in Brazil. 2024. 130 f. Tese (Doutorado em Arquitetura e Urbanismo) - Universidade Federal de Viçosa, Viçosa. 2024.
https://locus.ufv.br/handle/123456789/33575
https://doi.org/10.47328/ufvbbt.2025.024
identifier_str_mv SILVA, Mario Alves da. Multi-scale analysis of weather data for building performance assessment in Brazil. 2024. 130 f. Tese (Doutorado em Arquitetura e Urbanismo) - Universidade Federal de Viçosa, Viçosa. 2024.
url https://locus.ufv.br/handle/123456789/33575
https://doi.org/10.47328/ufvbbt.2025.024
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1855045620525432832