Multi-scale analysis of weather data for building performance assessment in Brazil
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Viçosa
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://locus.ufv.br/handle/123456789/33575 https://doi.org/10.47328/ufvbbt.2025.024 |
Resumo: | The choice of weather data is fundamental for assessing building performance in an accurate and representative way. Typical weather files usually apply a statistical approach to select months representative of current climatic conditions, but they do not encompass site-specific characteristics for different locations worldwide. This work analyses the potential of a multi-scale analysis for building performance assessment from different resolutions of weather data, in a comprehensive geographical territory, given the size of Brazil. It presents an overview of weather data and its application on building performance analysis and a general procedure to retrieve and process weather data, and different approaches to compile weather files for building performance assessment. The study also provides an extensive analysis of the Brazilian territory, presenting a climatic profile and trends for the entire territory. The analysis focuses on a climatic and bioclimatic summary, and on building performance simulations for representative cities according to the Brazilian bioclimatic zoning. Then, it compares the records from ERA5-Land and INMET to quantify the differences and present the impact on building performance analysis. The study proposes a new weather file compilation method for Brazil and applies statistical tests to determine whether the new approach delivers better results than the existing TMY methods. The procedure encompasses correlation and sensitivity analysis based on machine learning models to propose a performance-based method. The initial analysis of the Brazilian territory showed predominantly a temperature increase based on the 2008-2022 records, with some locations reaching more than 1 °C. However, the bioclimatic approach based on Givoni’s chart showed that ventilation strategies are still the most effective approach instead of HVAC systems. Following the comparison between high resolution spatial data and weather stations from Brazil, some locations present insufficient years for a multi-year analysis and some municipalities show a significant variation not only of weather data, but also of the building performance results. Finally, the analysis of new weather files for Brazil allowed concluding that creating typical year weather files based on a performance approach delivers the best outcomes, since they are closer to the historical records. Keywords: climate analysis; building performance simulation; weather files; machine learning |
| id |
UFV_3dcb2f354d855c63a4c2a0b05fb45392 |
|---|---|
| oai_identifier_str |
oai:locus.ufv.br:123456789/33575 |
| network_acronym_str |
UFV |
| network_name_str |
LOCUS Repositório Institucional da UFV |
| repository_id_str |
|
| spelling |
Multi-scale analysis of weather data for building performance assessment in BrazilAnálise multiescala de dados climáticos para avaliação de desempenho de edificações no BrasilEdifícios - Engenharia ambientalArquitetura e climaMeteorologia - Métodos estatísticosAprendizado do computadorCIENCIAS SOCIAIS APLICADAS::ARQUITETURA E URBANISMO::TECNOLOGIA DE ARQUITETURA E URBANISMOThe choice of weather data is fundamental for assessing building performance in an accurate and representative way. Typical weather files usually apply a statistical approach to select months representative of current climatic conditions, but they do not encompass site-specific characteristics for different locations worldwide. This work analyses the potential of a multi-scale analysis for building performance assessment from different resolutions of weather data, in a comprehensive geographical territory, given the size of Brazil. It presents an overview of weather data and its application on building performance analysis and a general procedure to retrieve and process weather data, and different approaches to compile weather files for building performance assessment. The study also provides an extensive analysis of the Brazilian territory, presenting a climatic profile and trends for the entire territory. The analysis focuses on a climatic and bioclimatic summary, and on building performance simulations for representative cities according to the Brazilian bioclimatic zoning. Then, it compares the records from ERA5-Land and INMET to quantify the differences and present the impact on building performance analysis. The study proposes a new weather file compilation method for Brazil and applies statistical tests to determine whether the new approach delivers better results than the existing TMY methods. The procedure encompasses correlation and sensitivity analysis based on machine learning models to propose a performance-based method. The initial analysis of the Brazilian territory showed predominantly a temperature increase based on the 2008-2022 records, with some locations reaching more than 1 °C. However, the bioclimatic approach based on Givoni’s chart showed that ventilation strategies are still the most effective approach instead of HVAC systems. Following the comparison between high resolution spatial data and weather stations from Brazil, some locations present insufficient years for a multi-year analysis and some municipalities show a significant variation not only of weather data, but also of the building performance results. Finally, the analysis of new weather files for Brazil allowed concluding that creating typical year weather files based on a performance approach delivers the best outcomes, since they are closer to the historical records. Keywords: climate analysis; building performance simulation; weather files; machine learningA escolha de dados meteorológicos é fundamental para avaliar o desempenho de edifícios de forma precisa e representativa. Arquivos climáticos típicos geralmente aplicam uma abordagem estatística para selecionar meses representativos das condições climáticas atuais, mas não abrangem características específicas do local para diferentes locais no mundo. Este trabalho analisa o potencial de uma análise multiescala para avaliação de desempenho de edifícios a partir de diferentes resoluções de dados meteorológicos, em um território geográfico abrangente, dado o tamanho do Brasil. O trabalho apresenta uma visão geral dos dados meteorológicos e sua aplicação na análise de desempenho de edifícios e um procedimento geral para coletar e processar dados meteorológicos, e diferentes abordagens para compilar arquivos climáticos para avaliação de desempenho de edifícios. O estudo também fornece uma análise extensa do território brasileiro, apresentando um perfil climático e tendências para todo o território. A análise se concentra em um resumo climático e bioclimático e em simulações de desempenho para cidades representativas de acordo com o zoneamento bioclimático brasileiro. Em seguida, o trabalho compara os registros da base de dados ERA5-Land e do INMET para quantificar as diferenças e apresentar o impacto na análise de desempenho de edifícios. O estudo propõe um novo método de compilação de arquivos climáticos para o Brasil e aplica testes estatísticos para determinar se a nova abordagem fornece melhores resultados do que os métodos TMY existentes. O procedimento abrange análise de correlação e sensibilidade com base em modelos de aprendizado de máquina para propor um método baseado em desempenho. A análise inicial do território brasileiro mostrou predominantemente um aumento de temperatura com base nos registros de 2008-2022, com alguns locais atingindo mais de 1 °C. No entanto, a abordagem bioclimática com base no diagrama de Givoni mostrou que as estratégias de ventilação ainda são a abordagem mais eficaz em vez dos sistemas HVAC. Após a comparação entre dados espaciais de alta resolução e estações meteorológicas do Brasil, alguns locais apresentam anos insuficientes para uma análise multianual e alguns municípios mostram uma variação significativa não apenas dos dados meteorológicos, mas também dos resultados de desempenho do edifício. Finalmente, a análise de novos arquivos climáticos para o Brasil permitiu concluir que a criação de arquivos climáticos típicos com base em uma abordagem de desempenho fornece os melhores resultados, uma vez que estão mais próximos dos registros históricos. Palavras-chave: análise climática; simulação de desempenho de edificações; arquivos climáticos; aprendizado de máquinaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Universidade Federal de ViçosaCarlo, Joyce Correnahttp://lattes.cnpq.br/7410328084280746Silva, Mario Alves da2025-02-03T11:02:01Z2024-11-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSILVA, Mario Alves da. Multi-scale analysis of weather data for building performance assessment in Brazil. 2024. 130 f. Tese (Doutorado em Arquitetura e Urbanismo) - Universidade Federal de Viçosa, Viçosa. 2024.https://locus.ufv.br/handle/123456789/33575https://doi.org/10.47328/ufvbbt.2025.024enginfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2025-02-04T06:01:19Zoai:locus.ufv.br:123456789/33575Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452025-02-04T06:01:19LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
| dc.title.none.fl_str_mv |
Multi-scale analysis of weather data for building performance assessment in Brazil Análise multiescala de dados climáticos para avaliação de desempenho de edificações no Brasil |
| title |
Multi-scale analysis of weather data for building performance assessment in Brazil |
| spellingShingle |
Multi-scale analysis of weather data for building performance assessment in Brazil Silva, Mario Alves da Edifícios - Engenharia ambiental Arquitetura e clima Meteorologia - Métodos estatísticos Aprendizado do computador CIENCIAS SOCIAIS APLICADAS::ARQUITETURA E URBANISMO::TECNOLOGIA DE ARQUITETURA E URBANISMO |
| title_short |
Multi-scale analysis of weather data for building performance assessment in Brazil |
| title_full |
Multi-scale analysis of weather data for building performance assessment in Brazil |
| title_fullStr |
Multi-scale analysis of weather data for building performance assessment in Brazil |
| title_full_unstemmed |
Multi-scale analysis of weather data for building performance assessment in Brazil |
| title_sort |
Multi-scale analysis of weather data for building performance assessment in Brazil |
| author |
Silva, Mario Alves da |
| author_facet |
Silva, Mario Alves da |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Carlo, Joyce Correna http://lattes.cnpq.br/7410328084280746 |
| dc.contributor.author.fl_str_mv |
Silva, Mario Alves da |
| dc.subject.por.fl_str_mv |
Edifícios - Engenharia ambiental Arquitetura e clima Meteorologia - Métodos estatísticos Aprendizado do computador CIENCIAS SOCIAIS APLICADAS::ARQUITETURA E URBANISMO::TECNOLOGIA DE ARQUITETURA E URBANISMO |
| topic |
Edifícios - Engenharia ambiental Arquitetura e clima Meteorologia - Métodos estatísticos Aprendizado do computador CIENCIAS SOCIAIS APLICADAS::ARQUITETURA E URBANISMO::TECNOLOGIA DE ARQUITETURA E URBANISMO |
| description |
The choice of weather data is fundamental for assessing building performance in an accurate and representative way. Typical weather files usually apply a statistical approach to select months representative of current climatic conditions, but they do not encompass site-specific characteristics for different locations worldwide. This work analyses the potential of a multi-scale analysis for building performance assessment from different resolutions of weather data, in a comprehensive geographical territory, given the size of Brazil. It presents an overview of weather data and its application on building performance analysis and a general procedure to retrieve and process weather data, and different approaches to compile weather files for building performance assessment. The study also provides an extensive analysis of the Brazilian territory, presenting a climatic profile and trends for the entire territory. The analysis focuses on a climatic and bioclimatic summary, and on building performance simulations for representative cities according to the Brazilian bioclimatic zoning. Then, it compares the records from ERA5-Land and INMET to quantify the differences and present the impact on building performance analysis. The study proposes a new weather file compilation method for Brazil and applies statistical tests to determine whether the new approach delivers better results than the existing TMY methods. The procedure encompasses correlation and sensitivity analysis based on machine learning models to propose a performance-based method. The initial analysis of the Brazilian territory showed predominantly a temperature increase based on the 2008-2022 records, with some locations reaching more than 1 °C. However, the bioclimatic approach based on Givoni’s chart showed that ventilation strategies are still the most effective approach instead of HVAC systems. Following the comparison between high resolution spatial data and weather stations from Brazil, some locations present insufficient years for a multi-year analysis and some municipalities show a significant variation not only of weather data, but also of the building performance results. Finally, the analysis of new weather files for Brazil allowed concluding that creating typical year weather files based on a performance approach delivers the best outcomes, since they are closer to the historical records. Keywords: climate analysis; building performance simulation; weather files; machine learning |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11-29 2025-02-03T11:02:01Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
SILVA, Mario Alves da. Multi-scale analysis of weather data for building performance assessment in Brazil. 2024. 130 f. Tese (Doutorado em Arquitetura e Urbanismo) - Universidade Federal de Viçosa, Viçosa. 2024. https://locus.ufv.br/handle/123456789/33575 https://doi.org/10.47328/ufvbbt.2025.024 |
| identifier_str_mv |
SILVA, Mario Alves da. Multi-scale analysis of weather data for building performance assessment in Brazil. 2024. 130 f. Tese (Doutorado em Arquitetura e Urbanismo) - Universidade Federal de Viçosa, Viçosa. 2024. |
| url |
https://locus.ufv.br/handle/123456789/33575 https://doi.org/10.47328/ufvbbt.2025.024 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
| publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
| dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
| instname_str |
Universidade Federal de Viçosa (UFV) |
| instacron_str |
UFV |
| institution |
UFV |
| reponame_str |
LOCUS Repositório Institucional da UFV |
| collection |
LOCUS Repositório Institucional da UFV |
| repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
| repository.mail.fl_str_mv |
fabiojreis@ufv.br |
| _version_ |
1855045620525432832 |