Abordagens inteligentes para estimar a produção de energia eólica

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Gebin, Luis Gustavo Gutierrez lattes
Orientador(a): Salgado, Ricardo Menezes lattes
Banca de defesa: Gonzaga, Flávio Barbieri, Ohishi, Takaaki
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alfenas
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística Aplicada e Biometria
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifal-mg.edu.br/handle/123456789/1287
Resumo: One of the major concerns of the twentieth century is to reconcile economic and social development with environmental preservation. Thus, the energy sector becomes the focus of study, since the part of emission of power gases is derived from the electric generation. As a consequence, renewable and clean energy sources, which do not cause harm to nature, such as a wind energy production, have gained prominence in Brazil and the world. Once again, the production of wind energy is an energy that can be taken out of the wind, man does not have total control over his generation, which makes it desirable that there is some confidence as to his electric potential. The justification for the development of these forecasting methods could be further extended by the energy potential of production and efficient in other years in terms of energy distribution. Besides that, you can have more security to decrease the thermal complementation, because the thermoelectric turbines are used in Brazil in seasonal periods, when hydroelectric production is low. However, an analysis of wind data is not a trivial task due to the existence of exogenous variables that can affect production. Seen this, the work aims to make the prediction of a week on an hourly scale of wind power production in the four seasons of the year with the intelligent models (Random Forest and XGBoost) and a ARIMA model, after that, apply in intelligent models a selection features, besides proposing a new model based on ensemble. From the results obtained, it can be seen that the Random Forest was the model most benefited by the selection feature, while the XGBoost, even without a selection, managed to perform interestingly, given its approach method. The ARIMA model, even without perfect fit, is a bit inferior to the smart models. As for the ensemble model, it is perceived that it was superior to the most disadvantageous models, especially in relation to RMSE. It is worth emphasizing that the ensemble model can improve in the prediction, mainly, in the extreme data, in which all the individual models overestimated.
id UNIFAL_86746990735680a8f4422f4255efc4e0
oai_identifier_str oai:repositorio.unifal-mg.edu.br:123456789/1287
network_acronym_str UNIFAL
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFAL
repository_id_str
spelling Gebin, Luis Gustavo Gutierrezhttp://lattes.cnpq.br/8918198224706238Nogueira, Denismar AlvesGonzaga, Flávio BarbieriOhishi, TakaakiSalgado, Ricardo Menezeshttp://lattes.cnpq.br/81320019048227302019-01-07T12:29:30Z2018-06-18GEBIN, Luis Gustavo Gutierrez. Abordagens inteligentes para estimar a produção de energia eólica. 2018. 103 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018.https://repositorio.unifal-mg.edu.br/handle/123456789/1287One of the major concerns of the twentieth century is to reconcile economic and social development with environmental preservation. Thus, the energy sector becomes the focus of study, since the part of emission of power gases is derived from the electric generation. As a consequence, renewable and clean energy sources, which do not cause harm to nature, such as a wind energy production, have gained prominence in Brazil and the world. Once again, the production of wind energy is an energy that can be taken out of the wind, man does not have total control over his generation, which makes it desirable that there is some confidence as to his electric potential. The justification for the development of these forecasting methods could be further extended by the energy potential of production and efficient in other years in terms of energy distribution. Besides that, you can have more security to decrease the thermal complementation, because the thermoelectric turbines are used in Brazil in seasonal periods, when hydroelectric production is low. However, an analysis of wind data is not a trivial task due to the existence of exogenous variables that can affect production. Seen this, the work aims to make the prediction of a week on an hourly scale of wind power production in the four seasons of the year with the intelligent models (Random Forest and XGBoost) and a ARIMA model, after that, apply in intelligent models a selection features, besides proposing a new model based on ensemble. From the results obtained, it can be seen that the Random Forest was the model most benefited by the selection feature, while the XGBoost, even without a selection, managed to perform interestingly, given its approach method. The ARIMA model, even without perfect fit, is a bit inferior to the smart models. As for the ensemble model, it is perceived that it was superior to the most disadvantageous models, especially in relation to RMSE. It is worth emphasizing that the ensemble model can improve in the prediction, mainly, in the extreme data, in which all the individual models overestimated.Uma das maiores preocupações do século XXI é conciliar o desenvolvimento econômico e social com a preservação ambiental. Assim, o setor de energia torna-se foco de estudo, visto que grande parte das emissões de gases poluentes são advindas da geração elétrica. Como consequência, fontes renováveis e limpas de energia, que não causam malefícios para a natureza, como a produção de energia eólica, ganharam destaque no Brasil e no mundo. Porém, como a produção de energia eólica é uma energia obtida a partir do vento, o homem não possui total controle sobre sua geração, o que torna desejável que se tenha certa confiança no que concerne ao seu potencial elétrico. O que justifica o desenvolvimento de métodos eficientes para previsão destes dados eólicos, pois obtendo confiança quanto a estes modelos de previsão, pode-se expandir, ainda mais, a eficiência e potencial energético da produção de energia eólica brasileira, além de auxiliar as empresas no que se refere a distribuição da energia. Além disso, pode-se ter mais segurança em diminuir a complementação térmica, visto que as turbinas termoelétricas são usadas no Brasil, em geral, em períodos sazonais, quando a produção hidroelétrica está em baixa. Todavia, a previsão dos dados eólicos não é tarefa trivial, devido às diversas variáveis exógenas que podem afetar na produção. Visto isso, o trabalho tem como objetivo fazer a predição de uma semana em escala horária da produção de energia eólica nas quatro estações do ano com os modelos inteligentes (XGBoost e Random Forest) e com um modelo estatístico tradicional (ARIMA), para posteriormente aplicar nos modelos inteligentes um algoritmo de seleção de variáveis, além de propor um novo modelo baseado em ensemble com os modelos individuais. A partir dos resultados obtidos, pode-se perceber que o Random Forest foi o modelo mais beneficiado pela seleção, enquanto que o XGBoost, mesmo sem a seleção, conseguiu ter um desempenho interessante, visto o seu método de aproximação. O ARIMA, mesmo sem ter se ajustado perfeitamente, obteve resultado um pouco inferior aos modelos inteligentes. Quanto ao ensemble proposto, percebe-se que o mesmo foi superior aos modelos desenvolvidos individualmente, principalmente em relação ao RMSE. Vale ressaltar que o ensemble conseguiu melhorar na predição, principalmente, nos dados extremos, em que todos os modelos individuais superestimavam.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Energia EólicaModelos EstatísticosPROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASAbordagens inteligentes para estimar a produção de energia eólicainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-21048508539903632002075167498588264571reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALGebin, Luis Gustavo GutierrezLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/88312a54-3e22-4795-89e3-d823cb2f61aa/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/7aea8ec1-29cf-4a68-aa5d-961c45604ac3/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/ebd3d079-3a6c-496d-b84e-9020a52915bc/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/b1d41ccf-560f-4dd8-85f7-db22b382f45e/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação Luis Gustavo Gutierrez Gebin.pdfDissertação Luis Gustavo Gutierrez Gebin.pdfapplication/pdf3222243https://repositorio.unifal-mg.edu.br/bitstreams/919e7d17-9ac6-496b-99d8-fefdc1694382/download264947accdd712fc6293fe8cda36a0ffMD55TEXTDissertação Luis Gustavo Gutierrez Gebin.pdf.txtDissertação Luis Gustavo Gutierrez Gebin.pdf.txtExtracted texttext/plain103641https://repositorio.unifal-mg.edu.br/bitstreams/fad1392e-8038-4d9d-b61b-acd4fba48edf/download2bcef84601589362f2454a21541776a8MD58THUMBNAILDissertação Luis Gustavo Gutierrez Gebin.pdf.jpgDissertação Luis Gustavo Gutierrez Gebin.pdf.jpgGenerated Thumbnailimage/jpeg2518https://repositorio.unifal-mg.edu.br/bitstreams/66a7f582-66a6-4999-84f3-224c9c0d8ca0/download1072e12f97135c7e1f2d753598c07cf8MD59123456789/12872025-04-14 09:53:40.308http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/1287https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T12:53:40Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.pt-BR.fl_str_mv Abordagens inteligentes para estimar a produção de energia eólica
title Abordagens inteligentes para estimar a produção de energia eólica
spellingShingle Abordagens inteligentes para estimar a produção de energia eólica
Gebin, Luis Gustavo Gutierrez
Energia Eólica
Modelos Estatísticos
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
title_short Abordagens inteligentes para estimar a produção de energia eólica
title_full Abordagens inteligentes para estimar a produção de energia eólica
title_fullStr Abordagens inteligentes para estimar a produção de energia eólica
title_full_unstemmed Abordagens inteligentes para estimar a produção de energia eólica
title_sort Abordagens inteligentes para estimar a produção de energia eólica
author Gebin, Luis Gustavo Gutierrez
author_facet Gebin, Luis Gustavo Gutierrez
author_role author
dc.contributor.author.fl_str_mv Gebin, Luis Gustavo Gutierrez
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8918198224706238
dc.contributor.advisor-co1.fl_str_mv Nogueira, Denismar Alves
dc.contributor.referee1.fl_str_mv Gonzaga, Flávio Barbieri
dc.contributor.referee2.fl_str_mv Ohishi, Takaaki
dc.contributor.advisor1.fl_str_mv Salgado, Ricardo Menezes
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8132001904822730
contributor_str_mv Nogueira, Denismar Alves
Gonzaga, Flávio Barbieri
Ohishi, Takaaki
Salgado, Ricardo Menezes
dc.subject.por.fl_str_mv Energia Eólica
Modelos Estatísticos
topic Energia Eólica
Modelos Estatísticos
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
dc.subject.cnpq.fl_str_mv PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
description One of the major concerns of the twentieth century is to reconcile economic and social development with environmental preservation. Thus, the energy sector becomes the focus of study, since the part of emission of power gases is derived from the electric generation. As a consequence, renewable and clean energy sources, which do not cause harm to nature, such as a wind energy production, have gained prominence in Brazil and the world. Once again, the production of wind energy is an energy that can be taken out of the wind, man does not have total control over his generation, which makes it desirable that there is some confidence as to his electric potential. The justification for the development of these forecasting methods could be further extended by the energy potential of production and efficient in other years in terms of energy distribution. Besides that, you can have more security to decrease the thermal complementation, because the thermoelectric turbines are used in Brazil in seasonal periods, when hydroelectric production is low. However, an analysis of wind data is not a trivial task due to the existence of exogenous variables that can affect production. Seen this, the work aims to make the prediction of a week on an hourly scale of wind power production in the four seasons of the year with the intelligent models (Random Forest and XGBoost) and a ARIMA model, after that, apply in intelligent models a selection features, besides proposing a new model based on ensemble. From the results obtained, it can be seen that the Random Forest was the model most benefited by the selection feature, while the XGBoost, even without a selection, managed to perform interestingly, given its approach method. The ARIMA model, even without perfect fit, is a bit inferior to the smart models. As for the ensemble model, it is perceived that it was superior to the most disadvantageous models, especially in relation to RMSE. It is worth emphasizing that the ensemble model can improve in the prediction, mainly, in the extreme data, in which all the individual models overestimated.
publishDate 2018
dc.date.issued.fl_str_mv 2018-06-18
dc.date.accessioned.fl_str_mv 2019-01-07T12:29:30Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GEBIN, Luis Gustavo Gutierrez. Abordagens inteligentes para estimar a produção de energia eólica. 2018. 103 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018.
dc.identifier.uri.fl_str_mv https://repositorio.unifal-mg.edu.br/handle/123456789/1287
identifier_str_mv GEBIN, Luis Gustavo Gutierrez. Abordagens inteligentes para estimar a produção de energia eólica. 2018. 103 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018.
url https://repositorio.unifal-mg.edu.br/handle/123456789/1287
dc.language.iso.fl_str_mv por
language por
dc.relation.department.fl_str_mv -8156311678363143599
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.cnpq.fl_str_mv -2104850853990363200
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UNIFAL-MG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL
instname:Universidade Federal de Alfenas (UNIFAL)
instacron:UNIFAL
instname_str Universidade Federal de Alfenas (UNIFAL)
instacron_str UNIFAL
institution UNIFAL
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFAL
collection Biblioteca Digital de Teses e Dissertações da UNIFAL
bitstream.url.fl_str_mv https://repositorio.unifal-mg.edu.br/bitstreams/88312a54-3e22-4795-89e3-d823cb2f61aa/download
https://repositorio.unifal-mg.edu.br/bitstreams/7aea8ec1-29cf-4a68-aa5d-961c45604ac3/download
https://repositorio.unifal-mg.edu.br/bitstreams/ebd3d079-3a6c-496d-b84e-9020a52915bc/download
https://repositorio.unifal-mg.edu.br/bitstreams/b1d41ccf-560f-4dd8-85f7-db22b382f45e/download
https://repositorio.unifal-mg.edu.br/bitstreams/919e7d17-9ac6-496b-99d8-fefdc1694382/download
https://repositorio.unifal-mg.edu.br/bitstreams/fad1392e-8038-4d9d-b61b-acd4fba48edf/download
https://repositorio.unifal-mg.edu.br/bitstreams/66a7f582-66a6-4999-84f3-224c9c0d8ca0/download
bitstream.checksum.fl_str_mv 31555718c4fc75849dd08f27935d4f6b
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
264947accdd712fc6293fe8cda36a0ff
2bcef84601589362f2454a21541776a8
1072e12f97135c7e1f2d753598c07cf8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)
repository.mail.fl_str_mv bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br
_version_ 1850508383646384128