Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Ferreira, Thales Rangel lattes
Orientador(a): Liska, Gilberto Rodrigues lattes
Banca de defesa: Seidel, Enio Júnior, Avelar, Fabricio Goecking
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alfenas
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística Aplicada e Biometria
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifal-mg.edu.br/handle/123456789/2290
Resumo: The occurrence of extreme rainfall events can cause significant damage to urban infrastructure, the environment, and human activities in general. Thus, understanding the behavior of this phenomenon in a region can assist in the planning of activities subject to such damages. Therefore, this study aimed to spatially model the maximum rainfall in the southern and southwestern regions of Minas Gerais, Brazil, using two approaches: Bayesian inference combined with Kriging and Inverse Distance Weighting (IDW), and Max-Stable Processes (MSP) and Spatial Generalized Extreme Value (GEV) models. Daily rainfall data from 29 cities in the region were used for the study. For the IDW analysis, Ordinary Kriging (OK) and Log-Normal Kriging (LNK) predictions were employed, obtained through Bayesian inference for each location and return periods (RPs) of 2, 5, and 10 years. The predictions were obtained using the best prior structure (non-informative and informative) for each municipality. For the Kriging methods, the best semivariogram model was evaluated among Gaussian, Spherical, Exponential, and Wave models. Model evaluation was performed using cross-validation and the mean prediction error (MPE). The evaluation results showed that for the spatial prediction at the highest return period, the most suitable model was OK with the Wave semivariogram. Consequently, this model was used to obtain the prediction maps for the 50- and 100-year RPs. For the MSP analysis, the Smith model and the Schlather model with Bessel, Cauchy, Powered Exponential, and Whittle-Matérn correlation functions were employed. In the Max-Stable and GEV spatial models, trend surfaces for the GEV parameters were used. The analysis of the spatial dependence of extremes was conducted using the Extremal Coefficient, which indicated evidence of low spatial dependence for the data. The models were evaluated using the Takeuchi Information Criterion and the calculation of the MPE. The results showed similarity between the models; however, the Smith model proved to be the most suitable. Therefore, this model was selected to obtain the prediction maps for the 50- and 100-year RPs
id UNIFAL_de45d18507463577a0808b102b4828a9
oai_identifier_str oai:repositorio.unifal-mg.edu.br:123456789/2290
network_acronym_str UNIFAL
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFAL
repository_id_str
spelling Ferreira, Thales Rangelhttp://lattes.cnpq.br/2217949943647601Beijo, Luiz AlbertoSeidel, Enio JúniorAvelar, Fabricio GoeckingLiska, Gilberto Rodrigueshttp://lattes.cnpq.br/05246891918876592023-08-14T17:06:13Z2023-06-27FERREIRA, Thales Rangel. Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais. 2023. 81 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, - Alfenas, MG, 2023.https://repositorio.unifal-mg.edu.br/handle/123456789/2290The occurrence of extreme rainfall events can cause significant damage to urban infrastructure, the environment, and human activities in general. Thus, understanding the behavior of this phenomenon in a region can assist in the planning of activities subject to such damages. Therefore, this study aimed to spatially model the maximum rainfall in the southern and southwestern regions of Minas Gerais, Brazil, using two approaches: Bayesian inference combined with Kriging and Inverse Distance Weighting (IDW), and Max-Stable Processes (MSP) and Spatial Generalized Extreme Value (GEV) models. Daily rainfall data from 29 cities in the region were used for the study. For the IDW analysis, Ordinary Kriging (OK) and Log-Normal Kriging (LNK) predictions were employed, obtained through Bayesian inference for each location and return periods (RPs) of 2, 5, and 10 years. The predictions were obtained using the best prior structure (non-informative and informative) for each municipality. For the Kriging methods, the best semivariogram model was evaluated among Gaussian, Spherical, Exponential, and Wave models. Model evaluation was performed using cross-validation and the mean prediction error (MPE). The evaluation results showed that for the spatial prediction at the highest return period, the most suitable model was OK with the Wave semivariogram. Consequently, this model was used to obtain the prediction maps for the 50- and 100-year RPs. For the MSP analysis, the Smith model and the Schlather model with Bessel, Cauchy, Powered Exponential, and Whittle-Matérn correlation functions were employed. In the Max-Stable and GEV spatial models, trend surfaces for the GEV parameters were used. The analysis of the spatial dependence of extremes was conducted using the Extremal Coefficient, which indicated evidence of low spatial dependence for the data. The models were evaluated using the Takeuchi Information Criterion and the calculation of the MPE. The results showed similarity between the models; however, the Smith model proved to be the most suitable. Therefore, this model was selected to obtain the prediction maps for the 50- and 100-year RPsA ocorrência de precipitações extremas pode causar danos significativos à infraestrutura urbana, ao meio ambiente e às atividades humanas em geral. Desta forma, compreender o comportamento desse fenômeno em uma região pode auxiliar no planejamento de atividades sujeitas à tais danos. Portanto, este trabalho teve como objetivo modelar espacialmente a precipitação máxima no sul e sudoeste de Minas Gerais utilizando duas abordagens: Inferência Bayesiana associada a Krigagem e Inverso da Distância Ponderada (IDP) e, processos Máx-estáveis (PME) e modelo Generalizado de Valores Extremos (GEV) espacial. Foram utilizados no estudo, dados diários de precipitação de 29 cidades da região. Para a análise via IDP, Krigagem Ordinária (KO) e Log-Normal (KLN), foram utilizadas predições de precipitação, obtidas via Inferência Bayesiana para cada localidade e tempos de retorno (TR), 2, 5 e 10 anos. As predições foram obtidas utilizando a melhor estrutura de priori (não informativa e informativa) para cada município. Para os métodos de Krigagem, foram avaliados o melhor modelo semivariograma dentre o Gaussiano, Esférico, Exponencial e Onda. A avaliação dos modelos deu-se utilizando validação cruzada e o erro médio de predição (EMP). Os resultados da avaliação evidenciaram que para a predição espacial para o tempo de retorno mais alto o modelo mais adequado foi a KO com semivariograma Onda. Desta forma, este foi utilizado para a obtenção dos mapas de predição para os TR de 50 e 100 anos. Para a análise via PME, foram utilizados o modelo de Smith e o modelo de Schlather com função de correlação de Bessel, Cauchy, Powered Exponential e Whittle-Mátern. Nos modelos Máx-estáveis e no modelo GEV espacial foram utilizadas superfícies de tendência para os parâmetros da GEV. A análise da dependência espacial de extremos foi realizada por meio do Coeficiente Extremal, que apresentou evidências de baixa dependência espacial para os dados. Os modelos foram avaliados utilizando o Critério de Informação de Takeuchi e o cálculo do EMP. Os resultados evidenciaram similaridade entre os modelos, porém, o modelo de Smith mostrou-se o mais adequado. Logo, este foi selecionado para a obtenção dos mapas de predição para os TR de 50 e 100 anosCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/ChuvaDistribuição GEVKrigagemProcessos máx-estáveisSemivariogramaCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAAnálise espacial da precipitação extrema no sul e sudoeste de Minas Geraisinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-58364078281851435172075167498588264571reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALFerreira, Thales RangelLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/111ad08a-d2cb-4136-aa94-d8c2d6d1ef61/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/e46df6e2-b896-42c1-8487-dd8fdfbd4c47/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/f0f13a7b-4aef-4429-98dd-2ac0b30443b9/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/806fa212-f7bc-40b0-9898-38d0025d22cf/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertacão de Thales Rangel Ferreira.pdfDissertacão de Thales Rangel Ferreira.pdfapplication/pdf4364472https://repositorio.unifal-mg.edu.br/bitstreams/5e56e9f3-3a96-44fd-9c2f-bf983fa03d2b/downloada03819340bc52a11839e6839cff7fc6cMD55TEXTDissertacão de Thales Rangel Ferreira.pdf.txtDissertacão de Thales Rangel Ferreira.pdf.txtExtracted texttext/plain104064https://repositorio.unifal-mg.edu.br/bitstreams/750b56ff-57ac-4ec2-8b4d-31a32d738cca/download3249cf498a50e1d048089ca1a4ce04baMD58THUMBNAILDissertacão de Thales Rangel Ferreira.pdf.jpgDissertacão de Thales Rangel Ferreira.pdf.jpgGenerated Thumbnailimage/jpeg2761https://repositorio.unifal-mg.edu.br/bitstreams/34c76af2-4e38-4909-b8eb-8d655c0e07f6/download2a9d6b8f051ce38fa71983881b048017MD59123456789/22902025-04-14 09:56:44.752http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/2290https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T12:56:44Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.pt-BR.fl_str_mv Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais
title Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais
spellingShingle Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais
Ferreira, Thales Rangel
Chuva
Distribuição GEV
Krigagem
Processos máx-estáveis
Semivariograma
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais
title_full Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais
title_fullStr Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais
title_full_unstemmed Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais
title_sort Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais
author Ferreira, Thales Rangel
author_facet Ferreira, Thales Rangel
author_role author
dc.contributor.author.fl_str_mv Ferreira, Thales Rangel
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2217949943647601
dc.contributor.advisor-co1.fl_str_mv Beijo, Luiz Alberto
dc.contributor.referee1.fl_str_mv Seidel, Enio Júnior
dc.contributor.referee2.fl_str_mv Avelar, Fabricio Goecking
dc.contributor.advisor1.fl_str_mv Liska, Gilberto Rodrigues
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0524689191887659
contributor_str_mv Beijo, Luiz Alberto
Seidel, Enio Júnior
Avelar, Fabricio Goecking
Liska, Gilberto Rodrigues
dc.subject.por.fl_str_mv Chuva
Distribuição GEV
Krigagem
Processos máx-estáveis
Semivariograma
topic Chuva
Distribuição GEV
Krigagem
Processos máx-estáveis
Semivariograma
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description The occurrence of extreme rainfall events can cause significant damage to urban infrastructure, the environment, and human activities in general. Thus, understanding the behavior of this phenomenon in a region can assist in the planning of activities subject to such damages. Therefore, this study aimed to spatially model the maximum rainfall in the southern and southwestern regions of Minas Gerais, Brazil, using two approaches: Bayesian inference combined with Kriging and Inverse Distance Weighting (IDW), and Max-Stable Processes (MSP) and Spatial Generalized Extreme Value (GEV) models. Daily rainfall data from 29 cities in the region were used for the study. For the IDW analysis, Ordinary Kriging (OK) and Log-Normal Kriging (LNK) predictions were employed, obtained through Bayesian inference for each location and return periods (RPs) of 2, 5, and 10 years. The predictions were obtained using the best prior structure (non-informative and informative) for each municipality. For the Kriging methods, the best semivariogram model was evaluated among Gaussian, Spherical, Exponential, and Wave models. Model evaluation was performed using cross-validation and the mean prediction error (MPE). The evaluation results showed that for the spatial prediction at the highest return period, the most suitable model was OK with the Wave semivariogram. Consequently, this model was used to obtain the prediction maps for the 50- and 100-year RPs. For the MSP analysis, the Smith model and the Schlather model with Bessel, Cauchy, Powered Exponential, and Whittle-Matérn correlation functions were employed. In the Max-Stable and GEV spatial models, trend surfaces for the GEV parameters were used. The analysis of the spatial dependence of extremes was conducted using the Extremal Coefficient, which indicated evidence of low spatial dependence for the data. The models were evaluated using the Takeuchi Information Criterion and the calculation of the MPE. The results showed similarity between the models; however, the Smith model proved to be the most suitable. Therefore, this model was selected to obtain the prediction maps for the 50- and 100-year RPs
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-08-14T17:06:13Z
dc.date.issued.fl_str_mv 2023-06-27
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERREIRA, Thales Rangel. Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais. 2023. 81 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, - Alfenas, MG, 2023.
dc.identifier.uri.fl_str_mv https://repositorio.unifal-mg.edu.br/handle/123456789/2290
identifier_str_mv FERREIRA, Thales Rangel. Análise espacial da precipitação extrema no sul e sudoeste de Minas Gerais. 2023. 81 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, - Alfenas, MG, 2023.
url https://repositorio.unifal-mg.edu.br/handle/123456789/2290
dc.language.iso.fl_str_mv por
language por
dc.relation.department.fl_str_mv -8156311678363143599
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.cnpq.fl_str_mv -5836407828185143517
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UNIFAL-MG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL
instname:Universidade Federal de Alfenas (UNIFAL)
instacron:UNIFAL
instname_str Universidade Federal de Alfenas (UNIFAL)
instacron_str UNIFAL
institution UNIFAL
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFAL
collection Biblioteca Digital de Teses e Dissertações da UNIFAL
bitstream.url.fl_str_mv https://repositorio.unifal-mg.edu.br/bitstreams/111ad08a-d2cb-4136-aa94-d8c2d6d1ef61/download
https://repositorio.unifal-mg.edu.br/bitstreams/e46df6e2-b896-42c1-8487-dd8fdfbd4c47/download
https://repositorio.unifal-mg.edu.br/bitstreams/f0f13a7b-4aef-4429-98dd-2ac0b30443b9/download
https://repositorio.unifal-mg.edu.br/bitstreams/806fa212-f7bc-40b0-9898-38d0025d22cf/download
https://repositorio.unifal-mg.edu.br/bitstreams/5e56e9f3-3a96-44fd-9c2f-bf983fa03d2b/download
https://repositorio.unifal-mg.edu.br/bitstreams/750b56ff-57ac-4ec2-8b4d-31a32d738cca/download
https://repositorio.unifal-mg.edu.br/bitstreams/34c76af2-4e38-4909-b8eb-8d655c0e07f6/download
bitstream.checksum.fl_str_mv 31555718c4fc75849dd08f27935d4f6b
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
a03819340bc52a11839e6839cff7fc6c
3249cf498a50e1d048089ca1a4ce04ba
2a9d6b8f051ce38fa71983881b048017
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)
repository.mail.fl_str_mv bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br
_version_ 1850508387993780224