On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springs

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Santo, Douglas Roca [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/214362
Resumo: The use of the concept of periodicity has become an interesting solution for structural vibration reduction in many engineering applications. Structures built using the repetitive assembling of identical elements are called periodic structures, which can be used to achieve frequency regions where the propagating waves are highly attenuated, called attenuation zones. The objective of this work is to investigate the harmonic response of vibrating structures attached to nonlinear springs of the cubic type. The proposed analysis aims at investigating the effect of periodic local nonlinearities on the dynamic behavior and wave propagation properties in waveguide structures. In order to solve the nonlinear dynamic stiffness matrix problem, a closed-form solution using the methodology to solve polynomial equations is proposed. This yields a scalar polynomial equation, which is well suited for accurately computing the nonlinear receptance functions at some point in the structure considering a small number of unit cells. Alternatively, a method based on a perturbation approach is proposed to calculate the nonlinear frequency responses, resulting in a cubic matrix equation that can be solved numerically. It is found that the resonance peaks shift in frequency when compared to the use of linear springs, interesting features for the passive control of these structures. The effects of nonlinear springs on continuous mono-coupled periodic structures based on the concept of transmissibility of a single cell of finite structures are analyzed. Numerical simulations are carried out showing the influence of nonlinear springs over the structure bandgaps. The investigation showed that the vibration control in periodic structures can be improved by the use of nonlinear springs.
id UNSP_783d6d8ea31edfdbf5b00fe46ae10ef7
oai_identifier_str oai:repositorio.unesp.br:11449/214362
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springsComportamento dinâmico de estruturas contínuas mono-acopladas a molas não linearesPeriodic structuresCubic stiffnessPolynomial methodPerturbation methodTransmissibilityEstruturas periódicasRigidez cúbicaMétodo polinomialMétodo da perturbaçãoTransmissibilidadeThe use of the concept of periodicity has become an interesting solution for structural vibration reduction in many engineering applications. Structures built using the repetitive assembling of identical elements are called periodic structures, which can be used to achieve frequency regions where the propagating waves are highly attenuated, called attenuation zones. The objective of this work is to investigate the harmonic response of vibrating structures attached to nonlinear springs of the cubic type. The proposed analysis aims at investigating the effect of periodic local nonlinearities on the dynamic behavior and wave propagation properties in waveguide structures. In order to solve the nonlinear dynamic stiffness matrix problem, a closed-form solution using the methodology to solve polynomial equations is proposed. This yields a scalar polynomial equation, which is well suited for accurately computing the nonlinear receptance functions at some point in the structure considering a small number of unit cells. Alternatively, a method based on a perturbation approach is proposed to calculate the nonlinear frequency responses, resulting in a cubic matrix equation that can be solved numerically. It is found that the resonance peaks shift in frequency when compared to the use of linear springs, interesting features for the passive control of these structures. The effects of nonlinear springs on continuous mono-coupled periodic structures based on the concept of transmissibility of a single cell of finite structures are analyzed. Numerical simulations are carried out showing the influence of nonlinear springs over the structure bandgaps. The investigation showed that the vibration control in periodic structures can be improved by the use of nonlinear springs.O uso do conceito de periodicidade tem demonstrado ser uma solução interessante na redução de vibração estrutural em problemas de engenharia. Estruturas construídas utilizando o conceito de periodicidade são chamadas de estruturas periódicas e possuem regiões em que as ondas propagadas na estrutura são atenuadas. O objetivo deste trabalho é investigar a resposta harmônica de estruturas vibratórias acopladas a molas não lineares do tipo cúbica, com foco em analisar o efeito de não linearidades locais no comportamento dinâmico e propriedades de propagação de onda em estruturas guia. É proposta uma solução de forma fechada utilizando a metodologia de solução de polinomios, a fim de resolver a matriz de rigidez não linear. Esta metodologia resulta em uma equação escalar e mostra-se adequada para encontrar de forma precisa as funções receptância em pontos da estrutura considerando um pequeno número de células unitárias. Alternativamente, é proposta uma abordagem para calcular a resposta em frequência utilizando um método de perturbação, resultando numa equação cúbica na forma matricial que pode ser resolvida numericamente. Os resultados mostram o deslocamento na frequência dos picos de ressonancia em relação ao uso de molas lineares, características interessante no controle passivo destas estruturas. Os efeitos de molas não lineares sobre estruturas periódicas monoacopladas baseado no conceito de transmissibilidade de célula unitária de uma estrutura finita é analizado. São realizadas simulações numéricas demonstrando a influência das molas não lineares nas bandas de atenuação do da estrutura. A investigação mostrou que o controle passivo de vibrações em estruturas periódicas pode ser melhorado com o uso de molas não lineares.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 88881.190066/2018-01CAPES: 88882.432839/2018-01Universidade Estadual Paulista (Unesp)Gonçalves, Paulo José Paupitz [UNESP]Mencik, Jean-MathieuUniversidade Estadual Paulista (Unesp)Santo, Douglas Roca [UNESP]2021-09-10T11:31:08Z2021-09-10T11:31:08Z2021-08-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/11449/21436233004056080P8enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2025-08-28T05:03:24Zoai:repositorio.unesp.br:11449/214362Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-08-28T05:03:24Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springs
Comportamento dinâmico de estruturas contínuas mono-acopladas a molas não lineares
title On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springs
spellingShingle On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springs
Santo, Douglas Roca [UNESP]
Periodic structures
Cubic stiffness
Polynomial method
Perturbation method
Transmissibility
Estruturas periódicas
Rigidez cúbica
Método polinomial
Método da perturbação
Transmissibilidade
title_short On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springs
title_full On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springs
title_fullStr On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springs
title_full_unstemmed On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springs
title_sort On the dynamic behavior of mono-coupled continuous structures attached to nonlinear springs
author Santo, Douglas Roca [UNESP]
author_facet Santo, Douglas Roca [UNESP]
author_role author
dc.contributor.none.fl_str_mv Gonçalves, Paulo José Paupitz [UNESP]
Mencik, Jean-Mathieu
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Santo, Douglas Roca [UNESP]
dc.subject.por.fl_str_mv Periodic structures
Cubic stiffness
Polynomial method
Perturbation method
Transmissibility
Estruturas periódicas
Rigidez cúbica
Método polinomial
Método da perturbação
Transmissibilidade
topic Periodic structures
Cubic stiffness
Polynomial method
Perturbation method
Transmissibility
Estruturas periódicas
Rigidez cúbica
Método polinomial
Método da perturbação
Transmissibilidade
description The use of the concept of periodicity has become an interesting solution for structural vibration reduction in many engineering applications. Structures built using the repetitive assembling of identical elements are called periodic structures, which can be used to achieve frequency regions where the propagating waves are highly attenuated, called attenuation zones. The objective of this work is to investigate the harmonic response of vibrating structures attached to nonlinear springs of the cubic type. The proposed analysis aims at investigating the effect of periodic local nonlinearities on the dynamic behavior and wave propagation properties in waveguide structures. In order to solve the nonlinear dynamic stiffness matrix problem, a closed-form solution using the methodology to solve polynomial equations is proposed. This yields a scalar polynomial equation, which is well suited for accurately computing the nonlinear receptance functions at some point in the structure considering a small number of unit cells. Alternatively, a method based on a perturbation approach is proposed to calculate the nonlinear frequency responses, resulting in a cubic matrix equation that can be solved numerically. It is found that the resonance peaks shift in frequency when compared to the use of linear springs, interesting features for the passive control of these structures. The effects of nonlinear springs on continuous mono-coupled periodic structures based on the concept of transmissibility of a single cell of finite structures are analyzed. Numerical simulations are carried out showing the influence of nonlinear springs over the structure bandgaps. The investigation showed that the vibration control in periodic structures can be improved by the use of nonlinear springs.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-10T11:31:08Z
2021-09-10T11:31:08Z
2021-08-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/11449/214362
33004056080P8
url http://hdl.handle.net/11449/214362
identifier_str_mv 33004056080P8
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854954573833175040