Sistema inteligente para a predição de grupo de risco de evasão discente

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Martinho, Valquíria Ribeiro de Carvalho [UNESP]
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/11449/100340
Resumo: A evasão escolar é um dos problemas mais complexos e cruciais no âmbito da educação. Está presente e é motivo de preocupação nos vários níveis e modalidades de ensino, além de ferir o princípio da dignidade humana. No que tange ao ensino superior, internacionalmente, o fenômeno é objeto de atenção e de cuidado, no intuito de aumentar os índices de permanência e conclusão dos estudantes de graduação e minimizar os prejuízos sociais, econômicos, políticos, acadêmicos e financeiros causados a todos os envolvidos no processo educacional. Nesse contexto, é imprescindível o desenvolvimento de métodos e instrumentos eficientes e eficazes para predição, avaliação e acompanhamento de estudantes em risco de evasão, possibilitando o planejamento e a adoção de medidas proativas no intuito de minimizar a situação. Assim sendo, esta pesquisa tem por objetivo apresentar as potencialidades de um sistema inteligente capaz de identificar, de maneira proativa, continuada e acurada, o grupo de risco de evasão discente, da educação clássica-presencial, no ensino de nível superior. No desenvolvimento deste sistema foi utilizada uma das técnicas da inteligência artificial, as Redes Neurais Artificiais, mais especificamente, a Rede Neural ARTMAP-Fuzzy, uma rede neural da família ART (Adaptive Resonance Theory) que possibilita o aprendizado continuado do sistema. Para o treinamento e teste da Rede Neural e, posteriormente, a validação do sistema proposto foram utilizados os dados socioeconômicos e acadêmicos dos estudantes matriculados nos cursos superiores de tecnologia do Instituto Federal de Mato Grosso - IFMT. Os dados que compuseram os vetores de entrada do sistema foram coletados a partir de dois bancos de dados do sistema de informação do IFMT, respectivamente, o Q-seleção e o Q-Acadêmico. Este sistema faz a classificação dos padrões de entrada em propensos...
id UNSP_bc0e616693b044f290a1e71387593db1
oai_identifier_str oai:repositorio.unesp.br:11449/100340
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Sistema inteligente para a predição de grupo de risco de evasão discenteSistemas inteligentes de controleRedes neurais (Computação)Evasão universitariaIntelligent control systemsA evasão escolar é um dos problemas mais complexos e cruciais no âmbito da educação. Está presente e é motivo de preocupação nos vários níveis e modalidades de ensino, além de ferir o princípio da dignidade humana. No que tange ao ensino superior, internacionalmente, o fenômeno é objeto de atenção e de cuidado, no intuito de aumentar os índices de permanência e conclusão dos estudantes de graduação e minimizar os prejuízos sociais, econômicos, políticos, acadêmicos e financeiros causados a todos os envolvidos no processo educacional. Nesse contexto, é imprescindível o desenvolvimento de métodos e instrumentos eficientes e eficazes para predição, avaliação e acompanhamento de estudantes em risco de evasão, possibilitando o planejamento e a adoção de medidas proativas no intuito de minimizar a situação. Assim sendo, esta pesquisa tem por objetivo apresentar as potencialidades de um sistema inteligente capaz de identificar, de maneira proativa, continuada e acurada, o grupo de risco de evasão discente, da educação clássica-presencial, no ensino de nível superior. No desenvolvimento deste sistema foi utilizada uma das técnicas da inteligência artificial, as Redes Neurais Artificiais, mais especificamente, a Rede Neural ARTMAP-Fuzzy, uma rede neural da família ART (Adaptive Resonance Theory) que possibilita o aprendizado continuado do sistema. Para o treinamento e teste da Rede Neural e, posteriormente, a validação do sistema proposto foram utilizados os dados socioeconômicos e acadêmicos dos estudantes matriculados nos cursos superiores de tecnologia do Instituto Federal de Mato Grosso - IFMT. Os dados que compuseram os vetores de entrada do sistema foram coletados a partir de dois bancos de dados do sistema de informação do IFMT, respectivamente, o Q-seleção e o Q-Acadêmico. Este sistema faz a classificação dos padrões de entrada em propensos...School dropout is one of the most complex and crucial problems in the field of education. It permeates and afflicts the several levels and teaching modalities, besides hurting the principle of human dignity. In relation to higher education, internationally, the phenomenon is an object of attention and care, aiming to increase the indexes of permanence and completion rate of the undergraduate students and minimize social, economic, political and financial damage caused to all involved in the educational process. In this context, it is fundamental to develop efficient and effective methods and instruments for prediction, assessment and monitoring of the students at risk of dropping out, making the planning and the adoption of proactive actions possible for the improvement of the situation. Thus, this study aims to present the potentialities of an intelligent system able to identify, in a proactive, continued and accurate way, the student dropout risk group in higher education classroom courses. In the development of this system one of the artificial intelligence techniques was used, the Artificial Neural Networks, more specifically, the Fuzzy-ARTMAP Neural network, a neural network of the ART (Adaptive Resonance Theory) family which makes the continued learning of the system possible. For the training and test of the Neural Network and, later, the validation of the system proposed the socio-economic and academic records of the students enrolled in the technology courses of the Federal Institute of Mato Grosso – IFMT were used. The data that constituted the input vectors of the system were extracted from two database of the IFMT information system, respectively, the Q-selection and the Q-Academic. This system classifies the input patterns in school dropout propensity. The consistence of the results, showing a success rate of the dropout group around 95% and 100% and the overall mean accuracy around ...Universidade Estadual Paulista (Unesp)Minussi, Carlos Roberto [UNESP]Universidade Estadual Paulista (Unesp)Martinho, Valquíria Ribeiro de Carvalho [UNESP]2014-06-11T19:30:51Z2014-06-11T19:30:51Z2014-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis145 f. : il.application/pdfMARTINHO, Valquíria Ribeiro de Carvalho. Sistema inteligente para a predição de grupo de risco de evasão discente. 2014. 145 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Ilha Solteira, 2014.http://hdl.handle.net/11449/100340000751146000751146.pdf33004099080P07166279400544764Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2024-08-05T17:58:10Zoai:repositorio.unesp.br:11449/100340Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-08-05T17:58:10Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Sistema inteligente para a predição de grupo de risco de evasão discente
title Sistema inteligente para a predição de grupo de risco de evasão discente
spellingShingle Sistema inteligente para a predição de grupo de risco de evasão discente
Martinho, Valquíria Ribeiro de Carvalho [UNESP]
Sistemas inteligentes de controle
Redes neurais (Computação)
Evasão universitaria
Intelligent control systems
title_short Sistema inteligente para a predição de grupo de risco de evasão discente
title_full Sistema inteligente para a predição de grupo de risco de evasão discente
title_fullStr Sistema inteligente para a predição de grupo de risco de evasão discente
title_full_unstemmed Sistema inteligente para a predição de grupo de risco de evasão discente
title_sort Sistema inteligente para a predição de grupo de risco de evasão discente
author Martinho, Valquíria Ribeiro de Carvalho [UNESP]
author_facet Martinho, Valquíria Ribeiro de Carvalho [UNESP]
author_role author
dc.contributor.none.fl_str_mv Minussi, Carlos Roberto [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Martinho, Valquíria Ribeiro de Carvalho [UNESP]
dc.subject.por.fl_str_mv Sistemas inteligentes de controle
Redes neurais (Computação)
Evasão universitaria
Intelligent control systems
topic Sistemas inteligentes de controle
Redes neurais (Computação)
Evasão universitaria
Intelligent control systems
description A evasão escolar é um dos problemas mais complexos e cruciais no âmbito da educação. Está presente e é motivo de preocupação nos vários níveis e modalidades de ensino, além de ferir o princípio da dignidade humana. No que tange ao ensino superior, internacionalmente, o fenômeno é objeto de atenção e de cuidado, no intuito de aumentar os índices de permanência e conclusão dos estudantes de graduação e minimizar os prejuízos sociais, econômicos, políticos, acadêmicos e financeiros causados a todos os envolvidos no processo educacional. Nesse contexto, é imprescindível o desenvolvimento de métodos e instrumentos eficientes e eficazes para predição, avaliação e acompanhamento de estudantes em risco de evasão, possibilitando o planejamento e a adoção de medidas proativas no intuito de minimizar a situação. Assim sendo, esta pesquisa tem por objetivo apresentar as potencialidades de um sistema inteligente capaz de identificar, de maneira proativa, continuada e acurada, o grupo de risco de evasão discente, da educação clássica-presencial, no ensino de nível superior. No desenvolvimento deste sistema foi utilizada uma das técnicas da inteligência artificial, as Redes Neurais Artificiais, mais especificamente, a Rede Neural ARTMAP-Fuzzy, uma rede neural da família ART (Adaptive Resonance Theory) que possibilita o aprendizado continuado do sistema. Para o treinamento e teste da Rede Neural e, posteriormente, a validação do sistema proposto foram utilizados os dados socioeconômicos e acadêmicos dos estudantes matriculados nos cursos superiores de tecnologia do Instituto Federal de Mato Grosso - IFMT. Os dados que compuseram os vetores de entrada do sistema foram coletados a partir de dois bancos de dados do sistema de informação do IFMT, respectivamente, o Q-seleção e o Q-Acadêmico. Este sistema faz a classificação dos padrões de entrada em propensos...
publishDate 2014
dc.date.none.fl_str_mv 2014-06-11T19:30:51Z
2014-06-11T19:30:51Z
2014-02-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MARTINHO, Valquíria Ribeiro de Carvalho. Sistema inteligente para a predição de grupo de risco de evasão discente. 2014. 145 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Ilha Solteira, 2014.
http://hdl.handle.net/11449/100340
000751146
000751146.pdf
33004099080P0
7166279400544764
identifier_str_mv MARTINHO, Valquíria Ribeiro de Carvalho. Sistema inteligente para a predição de grupo de risco de evasão discente. 2014. 145 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Ilha Solteira, 2014.
000751146
000751146.pdf
33004099080P0
7166279400544764
url http://hdl.handle.net/11449/100340
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 145 f. : il.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854954692991254528