Transfer learning for structural health monitoring

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Yano, Marcus Omori
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Estadual Paulista (Unesp)
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/11449/251197
Resumo: Structural Health Monitoring (SHM) proposes the continuous assessment of the structural integrity to ensure the safety operation and increase the lifespan of structures from several areas. This traditional methodology still have generalization difficulties among structures, even when structures are nominally and topologically similar. The data sets present divergences between their underlying distributions that do not allow the generalization of the model estimated to different situations. In the last years, transfer learning has gained relevance due to extending the SHM concept to investigate different structures, while minimizing costs with monitoring systems and time associated with data acquisition. This methodology can change how SHM is currently proposed by leveraging knowledge gained from a well-monitored structure to improve the integrity assessment of other structures under unknown conditions. The main idea is to reuse the relevant knowledge from a labeled structure (source domain) to investigate another one (target domain) with limited data. This thesis intends to lay down the foundations of transfer learning for SHM by describing the motivations that led to its application in the analysis of structures. At first, transfer learning is applied to overcome difficulties inherent in the complexity of estimating an accurate finite element model, and unsupervised damage detection of a real bridge is performed using knowledge of its model. Then, transfer learning is combined with a stochastic model for damage detection in an experimental application and its underestimated numerical model, and the quantification of damage levels in the structure is carried out based on a requirement imposed by the transfer learning methodology. Finally, a comprehensive analysis using transfer learning is proposed to investigate three real bridges subjected to environmental and operational conditions, and the importance of the quality of knowledge transferred across different bridges for damage detection is highlighted. The transfer learning methodology indicated satisfactory results in all investigated cases and demonstrates the attractive benefits of its application, which can result in significant progress in the damage identification process considering different structures.
id UNSP_d5d2fa2b1a04b04f17ca0aa3381a92a3
oai_identifier_str oai:repositorio.unesp.br:11449/251197
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str
spelling Transfer learning for structural health monitoringSeria transferência de aprendizado para monitoramento de integridade estruturalTransfer learningDomain adaptationTransfer component analysisJoint distribution adaptationMaximum independence domain adaptationStructural health monitoringDamage identificationAprendizagem por transferênciaAdaptação de domílnioAnálise de componentes de transferênciaAdaptação de distribuição conjuntaAdaptação de domínio de independência máximaMonitoramento de integridade estruturalIdentificação de danoStructural Health Monitoring (SHM) proposes the continuous assessment of the structural integrity to ensure the safety operation and increase the lifespan of structures from several areas. This traditional methodology still have generalization difficulties among structures, even when structures are nominally and topologically similar. The data sets present divergences between their underlying distributions that do not allow the generalization of the model estimated to different situations. In the last years, transfer learning has gained relevance due to extending the SHM concept to investigate different structures, while minimizing costs with monitoring systems and time associated with data acquisition. This methodology can change how SHM is currently proposed by leveraging knowledge gained from a well-monitored structure to improve the integrity assessment of other structures under unknown conditions. The main idea is to reuse the relevant knowledge from a labeled structure (source domain) to investigate another one (target domain) with limited data. This thesis intends to lay down the foundations of transfer learning for SHM by describing the motivations that led to its application in the analysis of structures. At first, transfer learning is applied to overcome difficulties inherent in the complexity of estimating an accurate finite element model, and unsupervised damage detection of a real bridge is performed using knowledge of its model. Then, transfer learning is combined with a stochastic model for damage detection in an experimental application and its underestimated numerical model, and the quantification of damage levels in the structure is carried out based on a requirement imposed by the transfer learning methodology. Finally, a comprehensive analysis using transfer learning is proposed to investigate three real bridges subjected to environmental and operational conditions, and the importance of the quality of knowledge transferred across different bridges for damage detection is highlighted. The transfer learning methodology indicated satisfactory results in all investigated cases and demonstrates the attractive benefits of its application, which can result in significant progress in the damage identification process considering different structures.OMonitoramento de integridade estrutural (SHM) propõe a avaliação contínua da condição estrutural para garantir a operação segura e aumentar a vida útil de estruturas de diversas áreas. Esta metodologia tradicional ainda apresenta dificuldades de generalização entre estruturas, mesmo quando as estruturas são nominalmente e topologicamente semelhantes. Os conjuntos de dados apresentam divergências entre suas distribuições subjacentes que não permitem a generalização do modelo estimado para diferentes situações. Nos últimos anos, a transferência de aprendizado ganhou relevância devido à extensão do conceito SHM para investigar diferentes estruturas, minimizando custos com sistemas de monitoramento e tempo associado à aquisição de dados. Essa metodologia pode mudar a forma como SHM é proposto atualmente, aproveitando o conhecimento adquirido de uma estrutura conhecida para a avaliação de outras estruturas sob condições desconhecidas. A ideia principal é reutilizar o conhecimento relevante de uma estrutura conhecida (domínio fonte) para investigar outra (domínio alvo) com dados limitados. Esta tese pretende estabelecer as bases de transferência de aprendizado para SHM. Primeiramente, a transferência de aprendizado é aplicado para superar as dificuldades inerentes à complexidade de estimar um modelo de elementos finitos preciso, e a detecção de dano não-supervisionada de uma ponte real é realizada usando o conhecimento de seu modelo. Então, a transferência de aprendizado é combinado com um modelo estocástico para detecção de dano em uma aplicação experimental e seu modelo numérico subestimado, e a quantificação dos níveis de dano na estrutura é realizada através de um requisito imposto pela metodologia de aprendizagem por transferência. Por fim, uma análise abrangente de três pontes reais submetidas a condições ambientais e operacionais é proposta, e destaca-se a importância da qualidade do conhecimento transferido para detecção de dano. A metodologia de transferência de aprendizado indicou resultados satisfatórios em todos os casos investigados e demonstra os atrativos benefícios de sua aplicação, podendo resultar em avanços significativos no processo de identificação de dano considerando diferentes estruturas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 88882.433643/2019- 01CAPES: 88887.647575/2021-00CAPES: 001Universidade Estadual Paulista (Unesp)Silva, Samuel da [UNESP]Figueiredo, EloiYano, Marcus Omori2023-11-01T17:19:27Z2023-11-01T17:19:27Z2023-10-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfYano, Marcus Omori. Transfer learning for structural health monitoring. 2023. 135 f. Thesis (Doctorate in Mechanical Engineering) - College of Engineering, São Paulo State University - UNESP, Ilha Solteira, 2023.https://hdl.handle.net/11449/25119763735864372652290000-0002-9611-9692enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-12-09T17:18:48Zoai:repositorio.unesp.br:11449/251197Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-12-09T17:18:48Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Transfer learning for structural health monitoring
Seria transferência de aprendizado para monitoramento de integridade estrutural
title Transfer learning for structural health monitoring
spellingShingle Transfer learning for structural health monitoring
Yano, Marcus Omori
Transfer learning
Domain adaptation
Transfer component analysis
Joint distribution adaptation
Maximum independence domain adaptation
Structural health monitoring
Damage identification
Aprendizagem por transferência
Adaptação de domílnio
Análise de componentes de transferência
Adaptação de distribuição conjunta
Adaptação de domínio de independência máxima
Monitoramento de integridade estrutural
Identificação de dano
title_short Transfer learning for structural health monitoring
title_full Transfer learning for structural health monitoring
title_fullStr Transfer learning for structural health monitoring
title_full_unstemmed Transfer learning for structural health monitoring
title_sort Transfer learning for structural health monitoring
author Yano, Marcus Omori
author_facet Yano, Marcus Omori
author_role author
dc.contributor.none.fl_str_mv Silva, Samuel da [UNESP]
Figueiredo, Eloi
dc.contributor.author.fl_str_mv Yano, Marcus Omori
dc.subject.por.fl_str_mv Transfer learning
Domain adaptation
Transfer component analysis
Joint distribution adaptation
Maximum independence domain adaptation
Structural health monitoring
Damage identification
Aprendizagem por transferência
Adaptação de domílnio
Análise de componentes de transferência
Adaptação de distribuição conjunta
Adaptação de domínio de independência máxima
Monitoramento de integridade estrutural
Identificação de dano
topic Transfer learning
Domain adaptation
Transfer component analysis
Joint distribution adaptation
Maximum independence domain adaptation
Structural health monitoring
Damage identification
Aprendizagem por transferência
Adaptação de domílnio
Análise de componentes de transferência
Adaptação de distribuição conjunta
Adaptação de domínio de independência máxima
Monitoramento de integridade estrutural
Identificação de dano
description Structural Health Monitoring (SHM) proposes the continuous assessment of the structural integrity to ensure the safety operation and increase the lifespan of structures from several areas. This traditional methodology still have generalization difficulties among structures, even when structures are nominally and topologically similar. The data sets present divergences between their underlying distributions that do not allow the generalization of the model estimated to different situations. In the last years, transfer learning has gained relevance due to extending the SHM concept to investigate different structures, while minimizing costs with monitoring systems and time associated with data acquisition. This methodology can change how SHM is currently proposed by leveraging knowledge gained from a well-monitored structure to improve the integrity assessment of other structures under unknown conditions. The main idea is to reuse the relevant knowledge from a labeled structure (source domain) to investigate another one (target domain) with limited data. This thesis intends to lay down the foundations of transfer learning for SHM by describing the motivations that led to its application in the analysis of structures. At first, transfer learning is applied to overcome difficulties inherent in the complexity of estimating an accurate finite element model, and unsupervised damage detection of a real bridge is performed using knowledge of its model. Then, transfer learning is combined with a stochastic model for damage detection in an experimental application and its underestimated numerical model, and the quantification of damage levels in the structure is carried out based on a requirement imposed by the transfer learning methodology. Finally, a comprehensive analysis using transfer learning is proposed to investigate three real bridges subjected to environmental and operational conditions, and the importance of the quality of knowledge transferred across different bridges for damage detection is highlighted. The transfer learning methodology indicated satisfactory results in all investigated cases and demonstrates the attractive benefits of its application, which can result in significant progress in the damage identification process considering different structures.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-01T17:19:27Z
2023-11-01T17:19:27Z
2023-10-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Yano, Marcus Omori. Transfer learning for structural health monitoring. 2023. 135 f. Thesis (Doctorate in Mechanical Engineering) - College of Engineering, São Paulo State University - UNESP, Ilha Solteira, 2023.
https://hdl.handle.net/11449/251197
6373586437265229
0000-0002-9611-9692
identifier_str_mv Yano, Marcus Omori. Transfer learning for structural health monitoring. 2023. 135 f. Thesis (Doctorate in Mechanical Engineering) - College of Engineering, São Paulo State University - UNESP, Ilha Solteira, 2023.
6373586437265229
0000-0002-9611-9692
url https://hdl.handle.net/11449/251197
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854954813783015424