Transfer learning for structural health monitoring
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Estadual Paulista (Unesp)
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/11449/251197 |
Resumo: | Structural Health Monitoring (SHM) proposes the continuous assessment of the structural integrity to ensure the safety operation and increase the lifespan of structures from several areas. This traditional methodology still have generalization difficulties among structures, even when structures are nominally and topologically similar. The data sets present divergences between their underlying distributions that do not allow the generalization of the model estimated to different situations. In the last years, transfer learning has gained relevance due to extending the SHM concept to investigate different structures, while minimizing costs with monitoring systems and time associated with data acquisition. This methodology can change how SHM is currently proposed by leveraging knowledge gained from a well-monitored structure to improve the integrity assessment of other structures under unknown conditions. The main idea is to reuse the relevant knowledge from a labeled structure (source domain) to investigate another one (target domain) with limited data. This thesis intends to lay down the foundations of transfer learning for SHM by describing the motivations that led to its application in the analysis of structures. At first, transfer learning is applied to overcome difficulties inherent in the complexity of estimating an accurate finite element model, and unsupervised damage detection of a real bridge is performed using knowledge of its model. Then, transfer learning is combined with a stochastic model for damage detection in an experimental application and its underestimated numerical model, and the quantification of damage levels in the structure is carried out based on a requirement imposed by the transfer learning methodology. Finally, a comprehensive analysis using transfer learning is proposed to investigate three real bridges subjected to environmental and operational conditions, and the importance of the quality of knowledge transferred across different bridges for damage detection is highlighted. The transfer learning methodology indicated satisfactory results in all investigated cases and demonstrates the attractive benefits of its application, which can result in significant progress in the damage identification process considering different structures. |
| id |
UNSP_d5d2fa2b1a04b04f17ca0aa3381a92a3 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/251197 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
|
| spelling |
Transfer learning for structural health monitoringSeria transferência de aprendizado para monitoramento de integridade estruturalTransfer learningDomain adaptationTransfer component analysisJoint distribution adaptationMaximum independence domain adaptationStructural health monitoringDamage identificationAprendizagem por transferênciaAdaptação de domílnioAnálise de componentes de transferênciaAdaptação de distribuição conjuntaAdaptação de domínio de independência máximaMonitoramento de integridade estruturalIdentificação de danoStructural Health Monitoring (SHM) proposes the continuous assessment of the structural integrity to ensure the safety operation and increase the lifespan of structures from several areas. This traditional methodology still have generalization difficulties among structures, even when structures are nominally and topologically similar. The data sets present divergences between their underlying distributions that do not allow the generalization of the model estimated to different situations. In the last years, transfer learning has gained relevance due to extending the SHM concept to investigate different structures, while minimizing costs with monitoring systems and time associated with data acquisition. This methodology can change how SHM is currently proposed by leveraging knowledge gained from a well-monitored structure to improve the integrity assessment of other structures under unknown conditions. The main idea is to reuse the relevant knowledge from a labeled structure (source domain) to investigate another one (target domain) with limited data. This thesis intends to lay down the foundations of transfer learning for SHM by describing the motivations that led to its application in the analysis of structures. At first, transfer learning is applied to overcome difficulties inherent in the complexity of estimating an accurate finite element model, and unsupervised damage detection of a real bridge is performed using knowledge of its model. Then, transfer learning is combined with a stochastic model for damage detection in an experimental application and its underestimated numerical model, and the quantification of damage levels in the structure is carried out based on a requirement imposed by the transfer learning methodology. Finally, a comprehensive analysis using transfer learning is proposed to investigate three real bridges subjected to environmental and operational conditions, and the importance of the quality of knowledge transferred across different bridges for damage detection is highlighted. The transfer learning methodology indicated satisfactory results in all investigated cases and demonstrates the attractive benefits of its application, which can result in significant progress in the damage identification process considering different structures.OMonitoramento de integridade estrutural (SHM) propõe a avaliação contínua da condição estrutural para garantir a operação segura e aumentar a vida útil de estruturas de diversas áreas. Esta metodologia tradicional ainda apresenta dificuldades de generalização entre estruturas, mesmo quando as estruturas são nominalmente e topologicamente semelhantes. Os conjuntos de dados apresentam divergências entre suas distribuições subjacentes que não permitem a generalização do modelo estimado para diferentes situações. Nos últimos anos, a transferência de aprendizado ganhou relevância devido à extensão do conceito SHM para investigar diferentes estruturas, minimizando custos com sistemas de monitoramento e tempo associado à aquisição de dados. Essa metodologia pode mudar a forma como SHM é proposto atualmente, aproveitando o conhecimento adquirido de uma estrutura conhecida para a avaliação de outras estruturas sob condições desconhecidas. A ideia principal é reutilizar o conhecimento relevante de uma estrutura conhecida (domínio fonte) para investigar outra (domínio alvo) com dados limitados. Esta tese pretende estabelecer as bases de transferência de aprendizado para SHM. Primeiramente, a transferência de aprendizado é aplicado para superar as dificuldades inerentes à complexidade de estimar um modelo de elementos finitos preciso, e a detecção de dano não-supervisionada de uma ponte real é realizada usando o conhecimento de seu modelo. Então, a transferência de aprendizado é combinado com um modelo estocástico para detecção de dano em uma aplicação experimental e seu modelo numérico subestimado, e a quantificação dos níveis de dano na estrutura é realizada através de um requisito imposto pela metodologia de aprendizagem por transferência. Por fim, uma análise abrangente de três pontes reais submetidas a condições ambientais e operacionais é proposta, e destaca-se a importância da qualidade do conhecimento transferido para detecção de dano. A metodologia de transferência de aprendizado indicou resultados satisfatórios em todos os casos investigados e demonstra os atrativos benefícios de sua aplicação, podendo resultar em avanços significativos no processo de identificação de dano considerando diferentes estruturas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPES: 88882.433643/2019- 01CAPES: 88887.647575/2021-00CAPES: 001Universidade Estadual Paulista (Unesp)Silva, Samuel da [UNESP]Figueiredo, EloiYano, Marcus Omori2023-11-01T17:19:27Z2023-11-01T17:19:27Z2023-10-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfYano, Marcus Omori. Transfer learning for structural health monitoring. 2023. 135 f. Thesis (Doctorate in Mechanical Engineering) - College of Engineering, São Paulo State University - UNESP, Ilha Solteira, 2023.https://hdl.handle.net/11449/25119763735864372652290000-0002-9611-9692enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-12-09T17:18:48Zoai:repositorio.unesp.br:11449/251197Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-12-09T17:18:48Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Transfer learning for structural health monitoring Seria transferência de aprendizado para monitoramento de integridade estrutural |
| title |
Transfer learning for structural health monitoring |
| spellingShingle |
Transfer learning for structural health monitoring Yano, Marcus Omori Transfer learning Domain adaptation Transfer component analysis Joint distribution adaptation Maximum independence domain adaptation Structural health monitoring Damage identification Aprendizagem por transferência Adaptação de domílnio Análise de componentes de transferência Adaptação de distribuição conjunta Adaptação de domínio de independência máxima Monitoramento de integridade estrutural Identificação de dano |
| title_short |
Transfer learning for structural health monitoring |
| title_full |
Transfer learning for structural health monitoring |
| title_fullStr |
Transfer learning for structural health monitoring |
| title_full_unstemmed |
Transfer learning for structural health monitoring |
| title_sort |
Transfer learning for structural health monitoring |
| author |
Yano, Marcus Omori |
| author_facet |
Yano, Marcus Omori |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Silva, Samuel da [UNESP] Figueiredo, Eloi |
| dc.contributor.author.fl_str_mv |
Yano, Marcus Omori |
| dc.subject.por.fl_str_mv |
Transfer learning Domain adaptation Transfer component analysis Joint distribution adaptation Maximum independence domain adaptation Structural health monitoring Damage identification Aprendizagem por transferência Adaptação de domílnio Análise de componentes de transferência Adaptação de distribuição conjunta Adaptação de domínio de independência máxima Monitoramento de integridade estrutural Identificação de dano |
| topic |
Transfer learning Domain adaptation Transfer component analysis Joint distribution adaptation Maximum independence domain adaptation Structural health monitoring Damage identification Aprendizagem por transferência Adaptação de domílnio Análise de componentes de transferência Adaptação de distribuição conjunta Adaptação de domínio de independência máxima Monitoramento de integridade estrutural Identificação de dano |
| description |
Structural Health Monitoring (SHM) proposes the continuous assessment of the structural integrity to ensure the safety operation and increase the lifespan of structures from several areas. This traditional methodology still have generalization difficulties among structures, even when structures are nominally and topologically similar. The data sets present divergences between their underlying distributions that do not allow the generalization of the model estimated to different situations. In the last years, transfer learning has gained relevance due to extending the SHM concept to investigate different structures, while minimizing costs with monitoring systems and time associated with data acquisition. This methodology can change how SHM is currently proposed by leveraging knowledge gained from a well-monitored structure to improve the integrity assessment of other structures under unknown conditions. The main idea is to reuse the relevant knowledge from a labeled structure (source domain) to investigate another one (target domain) with limited data. This thesis intends to lay down the foundations of transfer learning for SHM by describing the motivations that led to its application in the analysis of structures. At first, transfer learning is applied to overcome difficulties inherent in the complexity of estimating an accurate finite element model, and unsupervised damage detection of a real bridge is performed using knowledge of its model. Then, transfer learning is combined with a stochastic model for damage detection in an experimental application and its underestimated numerical model, and the quantification of damage levels in the structure is carried out based on a requirement imposed by the transfer learning methodology. Finally, a comprehensive analysis using transfer learning is proposed to investigate three real bridges subjected to environmental and operational conditions, and the importance of the quality of knowledge transferred across different bridges for damage detection is highlighted. The transfer learning methodology indicated satisfactory results in all investigated cases and demonstrates the attractive benefits of its application, which can result in significant progress in the damage identification process considering different structures. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-11-01T17:19:27Z 2023-11-01T17:19:27Z 2023-10-23 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
Yano, Marcus Omori. Transfer learning for structural health monitoring. 2023. 135 f. Thesis (Doctorate in Mechanical Engineering) - College of Engineering, São Paulo State University - UNESP, Ilha Solteira, 2023. https://hdl.handle.net/11449/251197 6373586437265229 0000-0002-9611-9692 |
| identifier_str_mv |
Yano, Marcus Omori. Transfer learning for structural health monitoring. 2023. 135 f. Thesis (Doctorate in Mechanical Engineering) - College of Engineering, São Paulo State University - UNESP, Ilha Solteira, 2023. 6373586437265229 0000-0002-9611-9692 |
| url |
https://hdl.handle.net/11449/251197 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
| publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1854954813783015424 |