Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Rocha, Felipe Gonçalves da lattes
Orientador(a): Oliveira, Pedro Paulo Balbi de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Presbiteriana Mackenzie
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://dspace.mackenzie.br/handle/10899/28608
Resumo: Autômatos celulares conservativos (number conserving) podem representar ou modelar dinâmicas igualmente conservativas do mundo real. Na literatura, essa propriedade foi amplamente abordada para casos unidimensionais e bidimensionais em vizinhança de von Neumann. O presente trabalho visou realizar uma exploração computacional no espaço de regras bidimensionais com vizinhança de Moore de raio unitário. Para tanto, foram revisitados os principais conceitos sobre o tema, tais como a conservabilidade no espaço elementar e no espaço bidimensional de von Neumann; as condições gerais para conservabilidade em vizinhanças hiper-retangulares; a composição de regras conservativas; e o algoritmo de decomposição de regras por divisão e perturbação. A partir disso foi possível derivar uma expressão regular para as regras identidade e as que apresentam deslocamentos; propor um método para listar as regras do tráfego do espaço em questão; e introduzir uma heurística para obter regras do espaço desejado, a partir da composição de regras conservativas unidimensionais. Adicionalmente, ao se aplicar o algoritmo de decomposição de regras por divisão e perturbação, as regras conservativas em vizinhança de Moore obtidas revelaram-se ser as próprias regras em vizinhança de von Neumann de 4 dimensões. As regras conservativas obtidas foram analisadas do ponto de vista fenomenológico, o que levou ao agrupamento delas em classes, e revelou uma rica variedade de padrões de evoluções temporais.
id UPM_14549e762896e103052fd57bbcd4e2c7
oai_identifier_str oai:dspace.mackenzie.br:10899/28608
network_acronym_str UPM
network_name_str Repositório Digital do Mackenzie
repository_id_str
spelling http://lattes.cnpq.br/9556738277476279Rocha, Felipe Gonçalves daOliveira, Pedro Paulo Balbi dehttp://lattes.cnpq.br/23221485217066812021-12-18T21:44:23Z2021-12-18T21:44:23Z2020-12-08Autômatos celulares conservativos (number conserving) podem representar ou modelar dinâmicas igualmente conservativas do mundo real. Na literatura, essa propriedade foi amplamente abordada para casos unidimensionais e bidimensionais em vizinhança de von Neumann. O presente trabalho visou realizar uma exploração computacional no espaço de regras bidimensionais com vizinhança de Moore de raio unitário. Para tanto, foram revisitados os principais conceitos sobre o tema, tais como a conservabilidade no espaço elementar e no espaço bidimensional de von Neumann; as condições gerais para conservabilidade em vizinhanças hiper-retangulares; a composição de regras conservativas; e o algoritmo de decomposição de regras por divisão e perturbação. A partir disso foi possível derivar uma expressão regular para as regras identidade e as que apresentam deslocamentos; propor um método para listar as regras do tráfego do espaço em questão; e introduzir uma heurística para obter regras do espaço desejado, a partir da composição de regras conservativas unidimensionais. Adicionalmente, ao se aplicar o algoritmo de decomposição de regras por divisão e perturbação, as regras conservativas em vizinhança de Moore obtidas revelaram-se ser as próprias regras em vizinhança de von Neumann de 4 dimensões. As regras conservativas obtidas foram analisadas do ponto de vista fenomenológico, o que levou ao agrupamento delas em classes, e revelou uma rica variedade de padrões de evoluções temporais.Number conserving cellular automata can represent or model equally conservative realworld dynamics. In the literature, this property has been extensively addressed for the one-imensional case and for the two-dimensional von Neumann neighbourhood. The present work aimed at a computational exploration in the space of two-dimensional rules with Moore neighbourhood of unit radius. As such, the main related concepts were revisited, such as number conservation in the elementary space and in the two-dimensional case with von Neumann neighbourhood; the general conditions for number conservation in hyper-rectangular neighbourhoods; the composition of conservative rules; and the decomposition algorithm of division and disturbance rules. From this, it was possible to derive a regular expression for the identity and displacement rules; propose a method to list the traffic rules of the space at issue; and introduce a heuristic to obtain rules in the desired space, based on the composition of one-dimensional conservative rules. Additionally, when applying the split-and-perturb decomposition algorithm, the conservative rules in Moore neighbourhood obtained were revealed to be the same as those in von Neumann’s 4-dimensional neighbourhood. The conservative rules obtained were analysed from a phenomenological point of view, which led to their grouping into classes, and revealed a rich variety of patterns of temporal evolution.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfROCHA, Felipe Gonçalves da. Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore. 2020. 82 f. Dissertação ( Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo, 2020.https://dspace.mackenzie.br/handle/10899/28608two-dimensional cellular automatanumber conservationmoore neighbourhooddynamical equivalencerule compositionsplit-and-perturb decompositionporUniversidade Presbiteriana Mackenzieautômatos celulares bidimensionaisconservabilidade vizinhança de Moorevizinhança de Mooreequivalência dinâmicacomposição de regrasdecomposição de regras por divisão e perturbaçãoCNPQ::ENGENHARIASExplorando o espaço de autômatos celulares conservativos binários com vizinhança de Mooreinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Digital do Mackenzieinstname:Universidade Presbiteriana Mackenzie (MACKENZIE)instacron:MACKENZIERuivo, Eurico Luiz Prosperohttp://lattes.cnpq.br/5918644808671007Mendonça, José Ricardo Gonçalves dehttp://lattes.cnpq.br/8792749813872106BrasilEscola de Engenharia Mackenzie (EE)UPMEngenharia ElétricaLICENSElicense.txttext/plain2108https://dspace.mackenzie.br/bitstreams/9b932238-ec7f-460d-8f01-02545a9e0267/download1ca4f25d161e955cf4b7a4aa65b8e96eMD51ORIGINALFELIPE GONÇALVES DA ROCHA - protegida.pdfFelipe Gonçalves da Rochaapplication/pdf2632511https://dspace.mackenzie.br/bitstreams/ca9d063f-846d-4ab2-9ef3-20f7ad5b031c/download85da7b5da43a1fe12ec12acf3f98868bMD52TEXTFELIPE GONÇALVES DA ROCHA - protegida.pdf.txtFELIPE GONÇALVES DA ROCHA - protegida.pdf.txtExtracted texttext/plain146190https://dspace.mackenzie.br/bitstreams/6a718ee2-2152-48e3-8db7-2267e2301acf/downloadbfe975d6deadf7ceb51e00c95ae6cc74MD55THUMBNAILFELIPE GONÇALVES DA ROCHA - protegida.pdf.jpgFELIPE GONÇALVES DA ROCHA - protegida.pdf.jpgGenerated Thumbnailimage/jpeg1215https://dspace.mackenzie.br/bitstreams/9fd72e77-1bfb-435d-9903-62143a4f5690/download3fedd24ce74dd9213979dd677bbab9c2MD5610899/286082022-03-14 21:27:08.412oai:dspace.mackenzie.br:10899/28608https://dspace.mackenzie.brBiblioteca Digital de Teses e Dissertaçõeshttp://tede.mackenzie.br/jspui/PRIhttps://adelpha-api.mackenzie.br/server/oai/repositorio@mackenzie.br||paola.damato@mackenzie.bropendoar:102772022-03-14T21:27:08Repositório Digital do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSBlbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBQcmVzYml0ZXJpYW5hIE1hY2tlbnppZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgoKVm9jw6ogdGFtYsOpbSBjb25jb3JkYSBxdWUgYSBVbml2ZXJzaWRhZGUgUHJlc2JpdGVyaWFuYSBNYWNrZW56aWUgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgY29uaGVjaW1lbnRvLCBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBVbml2ZXJzaWRhZGUgUHJlc2JpdGVyaWFuYSBNYWNrZW56aWUgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVU5JVkVSU0lEQURFIFBSRVNCSVRFUklBTkEgTUFDS0VOWklFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVW5pdmVyc2lkYWRlIFByZXNiaXRlcmlhbmEgTWFja2VuemllIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyBjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore
title Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore
spellingShingle Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore
Rocha, Felipe Gonçalves da
autômatos celulares bidimensionais
conservabilidade vizinhança de Moore
vizinhança de Moore
equivalência dinâmica
composição de regras
decomposição de regras por divisão e perturbação
CNPQ::ENGENHARIAS
title_short Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore
title_full Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore
title_fullStr Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore
title_full_unstemmed Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore
title_sort Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore
author Rocha, Felipe Gonçalves da
author_facet Rocha, Felipe Gonçalves da
author_role author
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9556738277476279
dc.contributor.author.fl_str_mv Rocha, Felipe Gonçalves da
dc.contributor.advisor1.fl_str_mv Oliveira, Pedro Paulo Balbi de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2322148521706681
contributor_str_mv Oliveira, Pedro Paulo Balbi de
dc.subject.por.fl_str_mv autômatos celulares bidimensionais
conservabilidade vizinhança de Moore
vizinhança de Moore
equivalência dinâmica
composição de regras
decomposição de regras por divisão e perturbação
topic autômatos celulares bidimensionais
conservabilidade vizinhança de Moore
vizinhança de Moore
equivalência dinâmica
composição de regras
decomposição de regras por divisão e perturbação
CNPQ::ENGENHARIAS
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS
description Autômatos celulares conservativos (number conserving) podem representar ou modelar dinâmicas igualmente conservativas do mundo real. Na literatura, essa propriedade foi amplamente abordada para casos unidimensionais e bidimensionais em vizinhança de von Neumann. O presente trabalho visou realizar uma exploração computacional no espaço de regras bidimensionais com vizinhança de Moore de raio unitário. Para tanto, foram revisitados os principais conceitos sobre o tema, tais como a conservabilidade no espaço elementar e no espaço bidimensional de von Neumann; as condições gerais para conservabilidade em vizinhanças hiper-retangulares; a composição de regras conservativas; e o algoritmo de decomposição de regras por divisão e perturbação. A partir disso foi possível derivar uma expressão regular para as regras identidade e as que apresentam deslocamentos; propor um método para listar as regras do tráfego do espaço em questão; e introduzir uma heurística para obter regras do espaço desejado, a partir da composição de regras conservativas unidimensionais. Adicionalmente, ao se aplicar o algoritmo de decomposição de regras por divisão e perturbação, as regras conservativas em vizinhança de Moore obtidas revelaram-se ser as próprias regras em vizinhança de von Neumann de 4 dimensões. As regras conservativas obtidas foram analisadas do ponto de vista fenomenológico, o que levou ao agrupamento delas em classes, e revelou uma rica variedade de padrões de evoluções temporais.
publishDate 2020
dc.date.issued.fl_str_mv 2020-12-08
dc.date.accessioned.fl_str_mv 2021-12-18T21:44:23Z
dc.date.available.fl_str_mv 2021-12-18T21:44:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROCHA, Felipe Gonçalves da. Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore. 2020. 82 f. Dissertação ( Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo, 2020.
dc.identifier.uri.fl_str_mv https://dspace.mackenzie.br/handle/10899/28608
identifier_str_mv ROCHA, Felipe Gonçalves da. Explorando o espaço de autômatos celulares conservativos binários com vizinhança de Moore. 2020. 82 f. Dissertação ( Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo, 2020.
url https://dspace.mackenzie.br/handle/10899/28608
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Presbiteriana Mackenzie
publisher.none.fl_str_mv Universidade Presbiteriana Mackenzie
dc.source.none.fl_str_mv reponame:Repositório Digital do Mackenzie
instname:Universidade Presbiteriana Mackenzie (MACKENZIE)
instacron:MACKENZIE
instname_str Universidade Presbiteriana Mackenzie (MACKENZIE)
instacron_str MACKENZIE
institution MACKENZIE
reponame_str Repositório Digital do Mackenzie
collection Repositório Digital do Mackenzie
bitstream.url.fl_str_mv https://dspace.mackenzie.br/bitstreams/9b932238-ec7f-460d-8f01-02545a9e0267/download
https://dspace.mackenzie.br/bitstreams/ca9d063f-846d-4ab2-9ef3-20f7ad5b031c/download
https://dspace.mackenzie.br/bitstreams/6a718ee2-2152-48e3-8db7-2267e2301acf/download
https://dspace.mackenzie.br/bitstreams/9fd72e77-1bfb-435d-9903-62143a4f5690/download
bitstream.checksum.fl_str_mv 1ca4f25d161e955cf4b7a4aa65b8e96e
85da7b5da43a1fe12ec12acf3f98868b
bfe975d6deadf7ceb51e00c95ae6cc74
3fedd24ce74dd9213979dd677bbab9c2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Digital do Mackenzie - Universidade Presbiteriana Mackenzie (MACKENZIE)
repository.mail.fl_str_mv repositorio@mackenzie.br||paola.damato@mackenzie.br
_version_ 1851946006002794496