Mineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúde

Detalhes bibliográficos
Ano de defesa: 2003
Autor(a) principal: Domingues, Miriam Lúcia Campos Serra
Orientador(a): Engel, Paulo Martins
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/10183/2702
Resumo: A mineração de dados constitui o processo de descoberta de conhecimento interessante, com a utilização de métodos e técnicas que permitem analisar grandes conjuntos de dados para a extração de informação previamente desconhecida, válida e que gera ações úteis, de grande ajuda para a tomada de decisões estratégicas. Dentre as tarefas de mineração de dados, existem aquelas que realizam aprendizado não-supervisionado, o qual é aplicado em bases de dados não-classificados, em que o algoritmo extrai as características dos dados fornecidos e os agrupa em classes. Geralmente, o aprendizado não-supervisionado é aplicado em tarefas de agrupamento, que consistem em agrupar os dados de bancos de dados volumosos, com diferentes tipos de dados em classes ou grupos de objetos que são similares dentro de um mesmo grupo e dissimilares em diferentes grupos desses bancos de dados, de acordo com alguma medida de similaridade. Os agrupamentos são usados como ponto de partida para futuras investigações. Este trabalho explora, mediante a realização de um estudo de caso, o uso de agrupamento como tarefa de mineração de dados que realiza aprendizado nãosupervisionado, para avaliar a adequação desta tecnologia em uma base de dados real da área de saúde. Agrupamento é um tema ativo em pesquisas da área pelo seu potencial de aplicação em problemas práticos. O cenário da aplicação é o Sistema de Informações Hospitalares do SUS, sob a gestão da Secretaria Estadual de Saúde do Rio Grande do Sul. Mensalmente, o pagamento de um certo número de internações é bloqueado, uma vez que a cobrança de internações hospitalares é submetida a normas do SUS e a critérios técnicos de bloqueio estabelecidos pela Auditoria Médica da SES para verificar a ocorrência de algum tipo de impropriedade na cobrança dos procedimentos realizados nessas internações hospitalares. A análise de agrupamento foi utilizada para identificar perfis de comportamentos ou tendências nas internações hospitalares e avaliar desvios ou outliers em relação a essas tendências e, com isso, descobrir padrões interessantes que auxiliassem na otimização do trabalho dos auditores médicos da SES. Buscou-se ainda compreender as diferentes configurações de parâmetros oferecidos pela ferramenta escolhida para a mineração de dados, o IBM Intelligent Miner, e o mapeamento de uma metodologia de mineração de dados, o CRISP-DM, para o contexto específico deste estudo de caso. Os resultados deste estudo demonstram possibilidades de criação e melhora dos critérios técnicos de bloqueio das internações hospitalares que permitem a otimização do trabalho de auditores médicos da SES. Houve ainda ganhos na compreensão da tecnologia de mineração de dados com a utilização de agrupamento no que se refere ao uso de uma ferramenta e de uma metodologia de mineração de dados, em que erros e acertos evidenciam os cuidados que devem ser tomados em aplicações dessa tecnologia, além de contribuírem para o seu aperfeiçoamento.
id URGS_7385f8d6af30debdaeffcb063e1d2e05
oai_identifier_str oai:www.lume.ufrgs.br:10183/2702
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Domingues, Miriam Lúcia Campos SerraEngel, Paulo Martins2007-06-06T17:23:31Z2003http://hdl.handle.net/10183/2702000375416A mineração de dados constitui o processo de descoberta de conhecimento interessante, com a utilização de métodos e técnicas que permitem analisar grandes conjuntos de dados para a extração de informação previamente desconhecida, válida e que gera ações úteis, de grande ajuda para a tomada de decisões estratégicas. Dentre as tarefas de mineração de dados, existem aquelas que realizam aprendizado não-supervisionado, o qual é aplicado em bases de dados não-classificados, em que o algoritmo extrai as características dos dados fornecidos e os agrupa em classes. Geralmente, o aprendizado não-supervisionado é aplicado em tarefas de agrupamento, que consistem em agrupar os dados de bancos de dados volumosos, com diferentes tipos de dados em classes ou grupos de objetos que são similares dentro de um mesmo grupo e dissimilares em diferentes grupos desses bancos de dados, de acordo com alguma medida de similaridade. Os agrupamentos são usados como ponto de partida para futuras investigações. Este trabalho explora, mediante a realização de um estudo de caso, o uso de agrupamento como tarefa de mineração de dados que realiza aprendizado nãosupervisionado, para avaliar a adequação desta tecnologia em uma base de dados real da área de saúde. Agrupamento é um tema ativo em pesquisas da área pelo seu potencial de aplicação em problemas práticos. O cenário da aplicação é o Sistema de Informações Hospitalares do SUS, sob a gestão da Secretaria Estadual de Saúde do Rio Grande do Sul. Mensalmente, o pagamento de um certo número de internações é bloqueado, uma vez que a cobrança de internações hospitalares é submetida a normas do SUS e a critérios técnicos de bloqueio estabelecidos pela Auditoria Médica da SES para verificar a ocorrência de algum tipo de impropriedade na cobrança dos procedimentos realizados nessas internações hospitalares. A análise de agrupamento foi utilizada para identificar perfis de comportamentos ou tendências nas internações hospitalares e avaliar desvios ou outliers em relação a essas tendências e, com isso, descobrir padrões interessantes que auxiliassem na otimização do trabalho dos auditores médicos da SES. Buscou-se ainda compreender as diferentes configurações de parâmetros oferecidos pela ferramenta escolhida para a mineração de dados, o IBM Intelligent Miner, e o mapeamento de uma metodologia de mineração de dados, o CRISP-DM, para o contexto específico deste estudo de caso. Os resultados deste estudo demonstram possibilidades de criação e melhora dos critérios técnicos de bloqueio das internações hospitalares que permitem a otimização do trabalho de auditores médicos da SES. Houve ainda ganhos na compreensão da tecnologia de mineração de dados com a utilização de agrupamento no que se refere ao uso de uma ferramenta e de uma metodologia de mineração de dados, em que erros e acertos evidenciam os cuidados que devem ser tomados em aplicações dessa tecnologia, além de contribuírem para o seu aperfeiçoamento.application/pdfporBanco : DadosMineracao : DadosDescoberta : ConhecimentoInteligência artificialInformática médicaMineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúdeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal do Rio Grande do SulInstituto de InformáticaPrograma de Pós-Graduação em ComputaçãoPorto Alegre, BR-RS2003mestradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000375416.pdf000375416.pdfTexto completoapplication/pdf1911580http://www.lume.ufrgs.br/bitstream/10183/2702/1/000375416.pdfe1006b4f76cb5fbb5e8cd9fbbe97ba73MD51TEXT000375416.pdf.txt000375416.pdf.txtExtracted Texttext/plain293844http://www.lume.ufrgs.br/bitstream/10183/2702/2/000375416.pdf.txtb0af9496f1bcaa6997b31f416bfe103dMD52THUMBNAIL000375416.pdf.jpg000375416.pdf.jpgGenerated Thumbnailimage/jpeg1230http://www.lume.ufrgs.br/bitstream/10183/2702/3/000375416.pdf.jpg3db1eb8973169736dd6542a44c04b3c9MD5310183/27022018-10-15 09:07:32.62oai:www.lume.ufrgs.br:10183/2702Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532018-10-15T12:07:32Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Mineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúde
title Mineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúde
spellingShingle Mineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúde
Domingues, Miriam Lúcia Campos Serra
Banco : Dados
Mineracao : Dados
Descoberta : Conhecimento
Inteligência artificial
Informática médica
title_short Mineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúde
title_full Mineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúde
title_fullStr Mineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúde
title_full_unstemmed Mineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúde
title_sort Mineração de dados utilizando aprendizado não-supervisionado: um estudo de caso para bancos de dados da saúde
author Domingues, Miriam Lúcia Campos Serra
author_facet Domingues, Miriam Lúcia Campos Serra
author_role author
dc.contributor.author.fl_str_mv Domingues, Miriam Lúcia Campos Serra
dc.contributor.advisor1.fl_str_mv Engel, Paulo Martins
contributor_str_mv Engel, Paulo Martins
dc.subject.por.fl_str_mv Banco : Dados
Mineracao : Dados
Descoberta : Conhecimento
Inteligência artificial
Informática médica
topic Banco : Dados
Mineracao : Dados
Descoberta : Conhecimento
Inteligência artificial
Informática médica
description A mineração de dados constitui o processo de descoberta de conhecimento interessante, com a utilização de métodos e técnicas que permitem analisar grandes conjuntos de dados para a extração de informação previamente desconhecida, válida e que gera ações úteis, de grande ajuda para a tomada de decisões estratégicas. Dentre as tarefas de mineração de dados, existem aquelas que realizam aprendizado não-supervisionado, o qual é aplicado em bases de dados não-classificados, em que o algoritmo extrai as características dos dados fornecidos e os agrupa em classes. Geralmente, o aprendizado não-supervisionado é aplicado em tarefas de agrupamento, que consistem em agrupar os dados de bancos de dados volumosos, com diferentes tipos de dados em classes ou grupos de objetos que são similares dentro de um mesmo grupo e dissimilares em diferentes grupos desses bancos de dados, de acordo com alguma medida de similaridade. Os agrupamentos são usados como ponto de partida para futuras investigações. Este trabalho explora, mediante a realização de um estudo de caso, o uso de agrupamento como tarefa de mineração de dados que realiza aprendizado nãosupervisionado, para avaliar a adequação desta tecnologia em uma base de dados real da área de saúde. Agrupamento é um tema ativo em pesquisas da área pelo seu potencial de aplicação em problemas práticos. O cenário da aplicação é o Sistema de Informações Hospitalares do SUS, sob a gestão da Secretaria Estadual de Saúde do Rio Grande do Sul. Mensalmente, o pagamento de um certo número de internações é bloqueado, uma vez que a cobrança de internações hospitalares é submetida a normas do SUS e a critérios técnicos de bloqueio estabelecidos pela Auditoria Médica da SES para verificar a ocorrência de algum tipo de impropriedade na cobrança dos procedimentos realizados nessas internações hospitalares. A análise de agrupamento foi utilizada para identificar perfis de comportamentos ou tendências nas internações hospitalares e avaliar desvios ou outliers em relação a essas tendências e, com isso, descobrir padrões interessantes que auxiliassem na otimização do trabalho dos auditores médicos da SES. Buscou-se ainda compreender as diferentes configurações de parâmetros oferecidos pela ferramenta escolhida para a mineração de dados, o IBM Intelligent Miner, e o mapeamento de uma metodologia de mineração de dados, o CRISP-DM, para o contexto específico deste estudo de caso. Os resultados deste estudo demonstram possibilidades de criação e melhora dos critérios técnicos de bloqueio das internações hospitalares que permitem a otimização do trabalho de auditores médicos da SES. Houve ainda ganhos na compreensão da tecnologia de mineração de dados com a utilização de agrupamento no que se refere ao uso de uma ferramenta e de uma metodologia de mineração de dados, em que erros e acertos evidenciam os cuidados que devem ser tomados em aplicações dessa tecnologia, além de contribuírem para o seu aperfeiçoamento.
publishDate 2003
dc.date.issued.fl_str_mv 2003
dc.date.accessioned.fl_str_mv 2007-06-06T17:23:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/2702
dc.identifier.nrb.pt_BR.fl_str_mv 000375416
url http://hdl.handle.net/10183/2702
identifier_str_mv 000375416
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/2702/1/000375416.pdf
http://www.lume.ufrgs.br/bitstream/10183/2702/2/000375416.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/2702/3/000375416.pdf.jpg
bitstream.checksum.fl_str_mv e1006b4f76cb5fbb5e8cd9fbbe97ba73
b0af9496f1bcaa6997b31f416bfe103d
3db1eb8973169736dd6542a44c04b3c9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831315789255278592