Métodos multivariados aplicados para classificação de azeite de oliva extra virgem

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: LIMA, Iloane dos Santos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/57462/001300000892h
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática
Brasil
UFRPE
Programa de Pós-Graduação em Biometria e Estatística Aplicada
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7246
Resumo: Metabonômica é uma estratégia que baseia- se na identificação de padrões de um determinado problema biológico, por meio da obtenção de dados espectroscópicos/espectrométricos de um dado biofluido, o uso da estatística para extração dessas informações contribui significativamente para realização de classificações de grupos. Desse modo, o presente trabalho objetivou-se ao uso da estratégia metabonômica, baseados em espectros de ressonância magnética nuclear de hidrogênio (RMN 1H) e técnicas estatísticas multivariadas de agrupamento (Análise de Componentes Principais (PCA), Agrupamento Fuzzy) de amostras de azeite de oliva extra virgem. Utilizou-se 40 amostras de azeite de oliva extra virgem para este estudo. A partir da matriz de dados espectrais, utilizou-se o pré-processamento normalização pela soma, nas amostras. A partir da PCA, 99,1% da variância explicada utilizando dois componentes apenas, não foi possível observar agrupamentos naturais dos dados. Com a aplicação do agrupamento Fuzzy, constatou-se que houve distinção dos grupos em orgânico e comum, obtendo 65% de confiança. A validação feita pelo índice da silhueta, que apresentou 𝑆(𝑖) de 0,73, demonstrado que o agrupamento adotado apresenta força e critério de distinção adequados. Desse modo, o método de agrupamento Fuzzy foi o mais indicado para a construção de um modelo de classificação de amostras de azeite extra virgem, distinguindo seus diferentes modos de produção, orgânico e comum.
id URPE_b6c86b095b69a4cec8ccd5dd502a4126
oai_identifier_str oai:tede2:tede2/7246
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling Métodos multivariados aplicados para classificação de azeite de oliva extra virgemMetabonômicaMétodo multivariadoAzeite de olivaCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAMetabonômica é uma estratégia que baseia- se na identificação de padrões de um determinado problema biológico, por meio da obtenção de dados espectroscópicos/espectrométricos de um dado biofluido, o uso da estatística para extração dessas informações contribui significativamente para realização de classificações de grupos. Desse modo, o presente trabalho objetivou-se ao uso da estratégia metabonômica, baseados em espectros de ressonância magnética nuclear de hidrogênio (RMN 1H) e técnicas estatísticas multivariadas de agrupamento (Análise de Componentes Principais (PCA), Agrupamento Fuzzy) de amostras de azeite de oliva extra virgem. Utilizou-se 40 amostras de azeite de oliva extra virgem para este estudo. A partir da matriz de dados espectrais, utilizou-se o pré-processamento normalização pela soma, nas amostras. A partir da PCA, 99,1% da variância explicada utilizando dois componentes apenas, não foi possível observar agrupamentos naturais dos dados. Com a aplicação do agrupamento Fuzzy, constatou-se que houve distinção dos grupos em orgânico e comum, obtendo 65% de confiança. A validação feita pelo índice da silhueta, que apresentou 𝑆(𝑖) de 0,73, demonstrado que o agrupamento adotado apresenta força e critério de distinção adequados. Desse modo, o método de agrupamento Fuzzy foi o mais indicado para a construção de um modelo de classificação de amostras de azeite extra virgem, distinguindo seus diferentes modos de produção, orgânico e comum.Metabomics is a strategy that is based on the identification of patterns of a particular biological problem, by obtaining spectroscopic / spectrometric data of a given biofluid, the use of statistics to extract this information contributes significantly to the achievement of group classification. Thus, the present work aimed at the use of the meta-monetary strategy, based on nuclear magnetic resonance spectra of hydrogen and multivariate statistical techniques of grouping (principal component analysis (PCA), Fuzzy grouping) of samples of extra virgin olive oil. Were used 40 samples of extra virgin olive oil for this study. From the spectral data matrix, we used the pre-processing normalization by summation, in the samples. From the PCA, 99.1% of the variance explained using two components only, it was not possible to observe natural clusters of the data. with the application of the Fuzzy grouping, it was verified that there was distinction of the groups in organic and common, obtaining 65% confidence. The validation made by the silhouette index, which presented s (i) of 0.73, demonstrating that the adopted grouping presents adequate strength and criteria of distinction. Thus, the fuzzy grouping method was the most indicated in the construction of a classification model of samples of extra virgin olive oil, distinguishing their different modes of production, organic and common.Universidade Federal Rural de PernambucoDepartamento de Estatística e InformáticaBrasilUFRPEPrograma de Pós-Graduação em Biometria e Estatística AplicadaCUNHA FILHO, MoacyrSILVA, Ronaldo Dionísio daCUNHA FILHO, MoacyrSILVA, Ronaldo Dionísio daOLIVEIRA, Manoel Rivelino Gomes deLIMA, Iloane dos Santos2018-05-14T14:30:23Z2017-08-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLIMA, Iloane dos Santos. Métodos multivariados aplicados para classificação de azeite de oliva extra virgem. 2017. 49 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7246ark:/57462/001300000892hporinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPE2018-05-14T14:30:23Zoai:tede2:tede2/7246Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2018-05-14T14:30:23Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.none.fl_str_mv Métodos multivariados aplicados para classificação de azeite de oliva extra virgem
title Métodos multivariados aplicados para classificação de azeite de oliva extra virgem
spellingShingle Métodos multivariados aplicados para classificação de azeite de oliva extra virgem
LIMA, Iloane dos Santos
Metabonômica
Método multivariado
Azeite de oliva
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Métodos multivariados aplicados para classificação de azeite de oliva extra virgem
title_full Métodos multivariados aplicados para classificação de azeite de oliva extra virgem
title_fullStr Métodos multivariados aplicados para classificação de azeite de oliva extra virgem
title_full_unstemmed Métodos multivariados aplicados para classificação de azeite de oliva extra virgem
title_sort Métodos multivariados aplicados para classificação de azeite de oliva extra virgem
author LIMA, Iloane dos Santos
author_facet LIMA, Iloane dos Santos
author_role author
dc.contributor.none.fl_str_mv CUNHA FILHO, Moacyr
SILVA, Ronaldo Dionísio da
CUNHA FILHO, Moacyr
SILVA, Ronaldo Dionísio da
OLIVEIRA, Manoel Rivelino Gomes de
dc.contributor.author.fl_str_mv LIMA, Iloane dos Santos
dc.subject.por.fl_str_mv Metabonômica
Método multivariado
Azeite de oliva
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
topic Metabonômica
Método multivariado
Azeite de oliva
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description Metabonômica é uma estratégia que baseia- se na identificação de padrões de um determinado problema biológico, por meio da obtenção de dados espectroscópicos/espectrométricos de um dado biofluido, o uso da estatística para extração dessas informações contribui significativamente para realização de classificações de grupos. Desse modo, o presente trabalho objetivou-se ao uso da estratégia metabonômica, baseados em espectros de ressonância magnética nuclear de hidrogênio (RMN 1H) e técnicas estatísticas multivariadas de agrupamento (Análise de Componentes Principais (PCA), Agrupamento Fuzzy) de amostras de azeite de oliva extra virgem. Utilizou-se 40 amostras de azeite de oliva extra virgem para este estudo. A partir da matriz de dados espectrais, utilizou-se o pré-processamento normalização pela soma, nas amostras. A partir da PCA, 99,1% da variância explicada utilizando dois componentes apenas, não foi possível observar agrupamentos naturais dos dados. Com a aplicação do agrupamento Fuzzy, constatou-se que houve distinção dos grupos em orgânico e comum, obtendo 65% de confiança. A validação feita pelo índice da silhueta, que apresentou 𝑆(𝑖) de 0,73, demonstrado que o agrupamento adotado apresenta força e critério de distinção adequados. Desse modo, o método de agrupamento Fuzzy foi o mais indicado para a construção de um modelo de classificação de amostras de azeite extra virgem, distinguindo seus diferentes modos de produção, orgânico e comum.
publishDate 2017
dc.date.none.fl_str_mv 2017-08-31
2018-05-14T14:30:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LIMA, Iloane dos Santos. Métodos multivariados aplicados para classificação de azeite de oliva extra virgem. 2017. 49 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7246
dc.identifier.dark.fl_str_mv ark:/57462/001300000892h
identifier_str_mv LIMA, Iloane dos Santos. Métodos multivariados aplicados para classificação de azeite de oliva extra virgem. 2017. 49 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
ark:/57462/001300000892h
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/7246
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática
Brasil
UFRPE
Programa de Pós-Graduação em Biometria e Estatística Aplicada
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática
Brasil
UFRPE
Programa de Pós-Graduação em Biometria e Estatística Aplicada
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1854398983673217024