Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: XAVIER, Érika Fialho Morais
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática
Brasil
UFRPE
Programa de Pós-Graduação em Biometria e Estatística Aplicada
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4963
Resumo: Através da análise de Processos de Poisson tem sido possível realizar de forma satisfatória diversos estudos a partir de processos pontuais, com dados provenientes de contagem. Entretanto, estes processos limitam-se ao estudo de situações com padrões homogêneos, difícilmente encontrados em dados reais. Este trabalho propôs o estudo dos Processos Log Gaussianos de Cox (LGCP), processo que torna possível o estudo de dados com padrões pontuais heterogeneos a partir de uma generalização do processo de Poisson, baseado na realizaçãoo de um campo aleatório Gaussiano. Foram realizadas duas aplicações para o processo, a primeira em dados simulados de focos de incêndio em Castilla-La Mancha, Reino da Espanha, com a finalidade de explorar as propriedades gráfico-computacionais do LGCP, bem como a heterogeneidade proposta pelo processo. A segunda em dados reais de focos de calor e precipitação média de chuva no Bioma Amazônia, Brasil, detectados pelo satélite NOAA 15, entre os anos de 2007 e 2011. A inferência para esses processos é realizada sob a abordagem Bayesiana, utilizando o método de Monte Carlo em Cadeias de Markov (MCMC). Os objetivos propostos neste trabalho foram cumpridos de forma satisfatória, possibilitando previsões futuras a respeito dos dados em estudo.
id URPE_de4697c3b6e33e92c0210a86332adb2e
oai_identifier_str oai:tede2:tede2/4963
network_acronym_str URPE
network_name_str Biblioteca Digital de Teses e Dissertações da UFRPE
repository_id_str
spelling Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestalAbordagem bayesianaProcesso Log Gaussiano de CoxQueimadasCIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICAAtravés da análise de Processos de Poisson tem sido possível realizar de forma satisfatória diversos estudos a partir de processos pontuais, com dados provenientes de contagem. Entretanto, estes processos limitam-se ao estudo de situações com padrões homogêneos, difícilmente encontrados em dados reais. Este trabalho propôs o estudo dos Processos Log Gaussianos de Cox (LGCP), processo que torna possível o estudo de dados com padrões pontuais heterogeneos a partir de uma generalização do processo de Poisson, baseado na realizaçãoo de um campo aleatório Gaussiano. Foram realizadas duas aplicações para o processo, a primeira em dados simulados de focos de incêndio em Castilla-La Mancha, Reino da Espanha, com a finalidade de explorar as propriedades gráfico-computacionais do LGCP, bem como a heterogeneidade proposta pelo processo. A segunda em dados reais de focos de calor e precipitação média de chuva no Bioma Amazônia, Brasil, detectados pelo satélite NOAA 15, entre os anos de 2007 e 2011. A inferência para esses processos é realizada sob a abordagem Bayesiana, utilizando o método de Monte Carlo em Cadeias de Markov (MCMC). Os objetivos propostos neste trabalho foram cumpridos de forma satisfatória, possibilitando previsões futuras a respeito dos dados em estudo.Through the analysis of Poisson processes has been possible to perform satisfactorily some studies with data point processes counting. However, these processes are limited to the study of situations with homogeneous patterns, hardly found in actual data. This research has proposed the study of Log Gaussian Cox Processes, process that makes possible the study of patterns points heterogeneous data, with a based from Poisson process with on the realization of a Gaussian random field. We did two applications for the process, the first with simulated data of outbreaks of fire in Castilla-La Mancha, Kingdom of Spain, in order to explore the properties of the graph and computational of LGCP, and study the heterogeneity proposed by the process. The second focuses on real data of fire points and average rainfal in the Amazon Biome, Brazil, detected by satellite NOAA 15, between the years 2007 and 2011. The Inference for these processes are carried out under the Bayesian approach, using the Monte Carlo Markov Chain (MCMC). The proposed objectives of this work were completed satisfactorily, enabling future predictions about the data in the study.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESUniversidade Federal Rural de PernambucoDepartamento de Estatística e InformáticaBrasilUFRPEPrograma de Pós-Graduação em Biometria e Estatística AplicadaSANTOS, Eufrázio de SouzaCUNHA FILHO, MoacyrOLINDA, Ricardo Alves deANDRADE, Humber Agrelli deXAVIER, Érika Fialho Morais2016-07-05T14:28:06Z2013-04-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfXAVIER, Érika Fialho Morais. Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal. 2013. 61 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4963porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRPEinstname:Universidade Federal Rural de Pernambuco (UFRPE)instacron:UFRPE2025-11-13T11:49:57Zoai:tede2:tede2/4963Biblioteca Digital de Teses e Dissertaçõeshttp://www.tede2.ufrpe.br:8080/tede/PUBhttp://www.tede2.ufrpe.br:8080/oai/requestbdtd@ufrpe.br ||bdtd@ufrpe.bropendoar:2025-11-13T11:49:57Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)false
dc.title.none.fl_str_mv Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal
title Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal
spellingShingle Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal
XAVIER, Érika Fialho Morais
Abordagem bayesiana
Processo Log Gaussiano de Cox
Queimadas
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
title_short Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal
title_full Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal
title_fullStr Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal
title_full_unstemmed Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal
title_sort Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal
author XAVIER, Érika Fialho Morais
author_facet XAVIER, Érika Fialho Morais
author_role author
dc.contributor.none.fl_str_mv SANTOS, Eufrázio de Souza
CUNHA FILHO, Moacyr
OLINDA, Ricardo Alves de
ANDRADE, Humber Agrelli de
dc.contributor.author.fl_str_mv XAVIER, Érika Fialho Morais
dc.subject.por.fl_str_mv Abordagem bayesiana
Processo Log Gaussiano de Cox
Queimadas
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
topic Abordagem bayesiana
Processo Log Gaussiano de Cox
Queimadas
CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA
description Através da análise de Processos de Poisson tem sido possível realizar de forma satisfatória diversos estudos a partir de processos pontuais, com dados provenientes de contagem. Entretanto, estes processos limitam-se ao estudo de situações com padrões homogêneos, difícilmente encontrados em dados reais. Este trabalho propôs o estudo dos Processos Log Gaussianos de Cox (LGCP), processo que torna possível o estudo de dados com padrões pontuais heterogeneos a partir de uma generalização do processo de Poisson, baseado na realizaçãoo de um campo aleatório Gaussiano. Foram realizadas duas aplicações para o processo, a primeira em dados simulados de focos de incêndio em Castilla-La Mancha, Reino da Espanha, com a finalidade de explorar as propriedades gráfico-computacionais do LGCP, bem como a heterogeneidade proposta pelo processo. A segunda em dados reais de focos de calor e precipitação média de chuva no Bioma Amazônia, Brasil, detectados pelo satélite NOAA 15, entre os anos de 2007 e 2011. A inferência para esses processos é realizada sob a abordagem Bayesiana, utilizando o método de Monte Carlo em Cadeias de Markov (MCMC). Os objetivos propostos neste trabalho foram cumpridos de forma satisfatória, possibilitando previsões futuras a respeito dos dados em estudo.
publishDate 2013
dc.date.none.fl_str_mv 2013-04-10
2016-07-05T14:28:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv XAVIER, Érika Fialho Morais. Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal. 2013. 61 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4963
identifier_str_mv XAVIER, Érika Fialho Morais. Abordagem bayesiana para o processo espaço-temporal log gaussiano de Cox com aplicação no setor florestal. 2013. 61 f. Dissertação (Programa de Pós-Graduação em Biometria e Estatística Aplicada) - Universidade Federal Rural de Pernambuco, Recife.
url http://www.tede2.ufrpe.br:8080/tede2/handle/tede2/4963
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática
Brasil
UFRPE
Programa de Pós-Graduação em Biometria e Estatística Aplicada
publisher.none.fl_str_mv Universidade Federal Rural de Pernambuco
Departamento de Estatística e Informática
Brasil
UFRPE
Programa de Pós-Graduação em Biometria e Estatística Aplicada
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRPE
instname:Universidade Federal Rural de Pernambuco (UFRPE)
instacron:UFRPE
instname_str Universidade Federal Rural de Pernambuco (UFRPE)
instacron_str UFRPE
institution UFRPE
reponame_str Biblioteca Digital de Teses e Dissertações da UFRPE
collection Biblioteca Digital de Teses e Dissertações da UFRPE
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRPE - Universidade Federal Rural de Pernambuco (UFRPE)
repository.mail.fl_str_mv bdtd@ufrpe.br ||bdtd@ufrpe.br
_version_ 1854398960169385984