ARNI: an EEG-Based Model to Measure Program Comprehension

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Segalotto, Matheus
Orientador(a): Oliveira, Kleinner Silva Farias de
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade do Vale do Rio dos Sinos
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação Aplicada
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://www.repositorio.jesuita.org.br/handle/UNISINOS/7019
Resumo: A compreensão de programa é um processo cognitivo realizado no cérebro dos desenvolvedores para entender o código-fonte. Este processo cognitivo pode ser influenciado por vários fatores, incluindo o nível de modularização do código-fonte e o nível de experiência dos desenvolvedores de software. A compreensão de programa é amplamente reconhecida como uma tarefa com problemas de erro e esforço. No entanto, pouco foi feito para medir o esforço cognitivo dos desenvolvedores para compreender o programa. Além disso, esses fatores influentes não são explorados no nível de esforço cognitivo na perspectiva dos desenvolvedores de software. Além disso, alguns modelos de cognição foram criados para detectar indicadores de atividade cerebral, bem como dispositivos de eletroencefalografia (EEG) para suportar essas detecções. Infelizmente, eles não são capazes de medir o esforço cognitivo. Este trabalho, portanto, propõe o ARNI, um modelo computacional baseado em EEG para medir a compreensão do programa. O modelo ARNI foi produzido com base em lacunas encontradas na literatura após um estudo de mapeamento sistemático (SMS), que analisou 1706 estudos, 12 dos quais foram escolhidos como estudos primários. Um experimento controlado com 35 desenvolvedores de software foi realizado para avaliar o modelo ARNI através de 350 cenários de compreensão de programa. Além disso, esse experimento também avaliou os efeitos da modularização e a experiência dos desenvolvedores no esforço cognitivo dos desenvolvedores. Os resultados obtidos sugerem que o modelo ARNI foi útil para medir o esforço cognitivo. O experimento controlado revelou que a compreensão do código fonte não modular exigia menos esforço temporal (34,11%) e produziu uma taxa de compreensão mais alta (33,65%) do que o código fonte modular. As principais contribuições são: (1) a execução de SMS no contexto estudado; (2) um modelo computacional para medir a compreensão do programa para medir o código-fonte; (3) conhecimento empírico sobre os efeitos da modularização no esforço cognitivo dos desenvolvedores. Finalmente, este trabalho pode ser visto como um primeiro passo para uma agenda ambiciosa na área de compreensão de programa.
id USIN_30472eebc79d8a5242c4c1ebda31cc1e
oai_identifier_str oai:www.repositorio.jesuita.org.br:UNISINOS/7019
network_acronym_str USIN
network_name_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
repository_id_str
spelling 2018-04-24T13:44:05Z2018-04-24T13:44:05Z2018-01-18Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2018-04-24T13:44:05Z No. of bitstreams: 1 Matheus Segalotto_.pdf: 8717126 bytes, checksum: 94fda4721d448e49b82be91aaa8057c7 (MD5)Made available in DSpace on 2018-04-24T13:44:05Z (GMT). No. of bitstreams: 1 Matheus Segalotto_.pdf: 8717126 bytes, checksum: 94fda4721d448e49b82be91aaa8057c7 (MD5) Previous issue date: 2018-01-18A compreensão de programa é um processo cognitivo realizado no cérebro dos desenvolvedores para entender o código-fonte. Este processo cognitivo pode ser influenciado por vários fatores, incluindo o nível de modularização do código-fonte e o nível de experiência dos desenvolvedores de software. A compreensão de programa é amplamente reconhecida como uma tarefa com problemas de erro e esforço. No entanto, pouco foi feito para medir o esforço cognitivo dos desenvolvedores para compreender o programa. Além disso, esses fatores influentes não são explorados no nível de esforço cognitivo na perspectiva dos desenvolvedores de software. Além disso, alguns modelos de cognição foram criados para detectar indicadores de atividade cerebral, bem como dispositivos de eletroencefalografia (EEG) para suportar essas detecções. Infelizmente, eles não são capazes de medir o esforço cognitivo. Este trabalho, portanto, propõe o ARNI, um modelo computacional baseado em EEG para medir a compreensão do programa. O modelo ARNI foi produzido com base em lacunas encontradas na literatura após um estudo de mapeamento sistemático (SMS), que analisou 1706 estudos, 12 dos quais foram escolhidos como estudos primários. Um experimento controlado com 35 desenvolvedores de software foi realizado para avaliar o modelo ARNI através de 350 cenários de compreensão de programa. Além disso, esse experimento também avaliou os efeitos da modularização e a experiência dos desenvolvedores no esforço cognitivo dos desenvolvedores. Os resultados obtidos sugerem que o modelo ARNI foi útil para medir o esforço cognitivo. O experimento controlado revelou que a compreensão do código fonte não modular exigia menos esforço temporal (34,11%) e produziu uma taxa de compreensão mais alta (33,65%) do que o código fonte modular. As principais contribuições são: (1) a execução de SMS no contexto estudado; (2) um modelo computacional para medir a compreensão do programa para medir o código-fonte; (3) conhecimento empírico sobre os efeitos da modularização no esforço cognitivo dos desenvolvedores. Finalmente, este trabalho pode ser visto como um primeiro passo para uma agenda ambiciosa na área de compreensão de programa.Program comprehension is a cognitive process performed in the developers’ brain to understand source code. This cognitive process may be influenced by several factors, including the modularization level of source code and the experience level of software developers. The program comprehension is widely recognized as an error-prone and effort-consuming task. However, little has been done to measure developers’ cognitive effort to comprehend program. In addition, such influential factors are not explored at the cognitive effort level from the perspective of software developers. Additionally, some cognition models have been created to detect brain-activity indicators as well as wearable Electroencephalography (EEG) devices to support these detections. Unfortunately, they are not able to measure the cognitive effort. This work, therefore, proposes the ARNI, an EEG-Based computational model to measure program comprehension. The ARNI model was produced based on gaps found in the literature after a systematic mapping study (SMS), which reviewed 1706 studies, 12 of which were chosen as primary studies. A controlled experiment with 35 software developers was performed to evaluate the ARNI model through 350 scenarios of program comprehension. Moreover, this experiment also evaluated the effects of modularization and developers’ experience on the developers’ cognitive effort. The obtained results suggest that the ARNI model was useful to measure cognitive effort. The controlled experiment revealed that the comprehension of non-modular source code required less temporal effort (34.11%) and produced a higher correct comprehension rate (33.65%) than modular source code. The main contributions are: (1) the execution of SMS in the context studied; (2) a computational model to measure program comprehension to measure source code; (3) empirical knowledge about the effects of modularization on the developers’ cognitive effort. Finally, this work can be seen as a first step for an ambitious agenda in the area of program comprehension.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorPROSUP - Programa de Suporte à Pós-Gradução de Instituições de Ensino ParticularesSegalotto, Matheushttp://lattes.cnpq.br/3953655609776661http://lattes.cnpq.br/2582456631204400Oliveira, Kleinner Silva Farias deUniversidade do Vale do Rio dos SinosPrograma de Pós-Graduação em Computação AplicadaUnisinosBrasilEscola PolitécnicaARNI: an EEG-Based Model to Measure Program ComprehensionACCNPQ::Ciências Exatas e da Terra::Ciência da ComputaçãoEletroencefalogramaEstilo cognitivoSoftware - DesenvolvimentoCompreensão de programaElectroencephalogramCognitive indicatorsExperimental studiesProgram comprehensioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://www.repositorio.jesuita.org.br/handle/UNISINOS/7019info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)instname:Universidade do Vale do Rio dos Sinos (UNISINOS)instacron:UNISINOSORIGINALMatheus Segalotto_.pdfMatheus Segalotto_.pdfapplication/pdf8717126http://repositorio.jesuita.org.br/bitstream/UNISINOS/7019/1/Matheus+Segalotto_.pdf94fda4721d448e49b82be91aaa8057c7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82175http://repositorio.jesuita.org.br/bitstream/UNISINOS/7019/2/license.txt320e21f23402402ac4988605e1edd177MD52UNISINOS/70192018-04-24 10:59:31.418oai:www.repositorio.jesuita.org.br:UNISINOS/7019Ck5PVEE6IENPTE9RVUUgQVFVSSBBIFNVQSBQUsOTUFJJQSBMSUNFTsOHQQoKRXN0YSBsaWNlbsOnYSBkZSBleGVtcGxvIMOpIGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxpY2Vuw6dhIERFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBCgpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIApVbml2ZXJzaWRhZGUgZG8gVmFsZSBkbyBSaW8gZG9zIFNpbm9zIChVTklTSU5PUykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdSAKZGlzc2VydGHDp8OjbyBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IApjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogCmRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgU0lHTEEgREUgClVOSVZFUlNJREFERSwgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPIENPTU8gClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcyAKY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KBiblioteca Digital de Teses e DissertaçõesPRIhttp://www.repositorio.jesuita.org.br/oai/requestmaicons@unisinos.br ||dspace@unisinos.bropendoar:2018-04-24T13:59:31Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)false
dc.title.pt_BR.fl_str_mv ARNI: an EEG-Based Model to Measure Program Comprehension
title ARNI: an EEG-Based Model to Measure Program Comprehension
spellingShingle ARNI: an EEG-Based Model to Measure Program Comprehension
Segalotto, Matheus
ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
Eletroencefalograma
Estilo cognitivo
Software - Desenvolvimento
Compreensão de programa
Electroencephalogram
Cognitive indicators
Experimental studies
Program comprehension
title_short ARNI: an EEG-Based Model to Measure Program Comprehension
title_full ARNI: an EEG-Based Model to Measure Program Comprehension
title_fullStr ARNI: an EEG-Based Model to Measure Program Comprehension
title_full_unstemmed ARNI: an EEG-Based Model to Measure Program Comprehension
title_sort ARNI: an EEG-Based Model to Measure Program Comprehension
author Segalotto, Matheus
author_facet Segalotto, Matheus
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3953655609776661
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/2582456631204400
dc.contributor.author.fl_str_mv Segalotto, Matheus
dc.contributor.advisor1.fl_str_mv Oliveira, Kleinner Silva Farias de
contributor_str_mv Oliveira, Kleinner Silva Farias de
dc.subject.cnpq.fl_str_mv ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
topic ACCNPQ::Ciências Exatas e da Terra::Ciência da Computação
Eletroencefalograma
Estilo cognitivo
Software - Desenvolvimento
Compreensão de programa
Electroencephalogram
Cognitive indicators
Experimental studies
Program comprehension
dc.subject.por.fl_str_mv Eletroencefalograma
Estilo cognitivo
Software - Desenvolvimento
Compreensão de programa
dc.subject.eng.fl_str_mv Electroencephalogram
Cognitive indicators
Experimental studies
Program comprehension
description A compreensão de programa é um processo cognitivo realizado no cérebro dos desenvolvedores para entender o código-fonte. Este processo cognitivo pode ser influenciado por vários fatores, incluindo o nível de modularização do código-fonte e o nível de experiência dos desenvolvedores de software. A compreensão de programa é amplamente reconhecida como uma tarefa com problemas de erro e esforço. No entanto, pouco foi feito para medir o esforço cognitivo dos desenvolvedores para compreender o programa. Além disso, esses fatores influentes não são explorados no nível de esforço cognitivo na perspectiva dos desenvolvedores de software. Além disso, alguns modelos de cognição foram criados para detectar indicadores de atividade cerebral, bem como dispositivos de eletroencefalografia (EEG) para suportar essas detecções. Infelizmente, eles não são capazes de medir o esforço cognitivo. Este trabalho, portanto, propõe o ARNI, um modelo computacional baseado em EEG para medir a compreensão do programa. O modelo ARNI foi produzido com base em lacunas encontradas na literatura após um estudo de mapeamento sistemático (SMS), que analisou 1706 estudos, 12 dos quais foram escolhidos como estudos primários. Um experimento controlado com 35 desenvolvedores de software foi realizado para avaliar o modelo ARNI através de 350 cenários de compreensão de programa. Além disso, esse experimento também avaliou os efeitos da modularização e a experiência dos desenvolvedores no esforço cognitivo dos desenvolvedores. Os resultados obtidos sugerem que o modelo ARNI foi útil para medir o esforço cognitivo. O experimento controlado revelou que a compreensão do código fonte não modular exigia menos esforço temporal (34,11%) e produziu uma taxa de compreensão mais alta (33,65%) do que o código fonte modular. As principais contribuições são: (1) a execução de SMS no contexto estudado; (2) um modelo computacional para medir a compreensão do programa para medir o código-fonte; (3) conhecimento empírico sobre os efeitos da modularização no esforço cognitivo dos desenvolvedores. Finalmente, este trabalho pode ser visto como um primeiro passo para uma agenda ambiciosa na área de compreensão de programa.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-04-24T13:44:05Z
dc.date.available.fl_str_mv 2018-04-24T13:44:05Z
dc.date.issued.fl_str_mv 2018-01-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.repositorio.jesuita.org.br/handle/UNISINOS/7019
url http://www.repositorio.jesuita.org.br/handle/UNISINOS/7019
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Computação Aplicada
dc.publisher.initials.fl_str_mv Unisinos
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola Politécnica
publisher.none.fl_str_mv Universidade do Vale do Rio dos Sinos
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
instname:Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron:UNISINOS
instname_str Universidade do Vale do Rio dos Sinos (UNISINOS)
instacron_str UNISINOS
institution UNISINOS
reponame_str Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
collection Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos)
bitstream.url.fl_str_mv http://repositorio.jesuita.org.br/bitstream/UNISINOS/7019/1/Matheus+Segalotto_.pdf
http://repositorio.jesuita.org.br/bitstream/UNISINOS/7019/2/license.txt
bitstream.checksum.fl_str_mv 94fda4721d448e49b82be91aaa8057c7
320e21f23402402ac4988605e1edd177
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UNISINOS (RBDU Repositório Digital da Biblioteca da Unisinos) - Universidade do Vale do Rio dos Sinos (UNISINOS)
repository.mail.fl_str_mv maicons@unisinos.br ||dspace@unisinos.br
_version_ 1853242067879198720