Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares
| Ano de defesa: | 2014 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/55/55135/tde-24042014-165405/ |
Resumo: | Neste trabalho, apresentamos uma fórmula da variação das constantes para EDOs generalizadas lineares em espaços de Banach. Mais especificamente, estamos interessados em estabelecer uma relação entre as soluções do problema de Cauchy para uma EDO generalizada linear \'dx SUP. d \'tau\' =D[A(t )x], x(\'t IND. 0\') = \'x SOB. ~\' e as soluções do problema de Cauchy perturbado \'dx SUP. d \'tau\' =D[A(t )x +F(x, t )], x(\'t IND. 0\') = x(\'t IND. 0\') = \'x SOB. ~\' , em que as funções envolvidas são Perron integráveis e, portanto, admitem muitas descontinuidades e oscilações. Também provamos a existência de uma correspondência biunívoca entre o problema de Cauchy para uma EDF linear da forma { \' y PONTO\' =L(t )\'y IND. t\' , \'y IND. t IND. 0 = \\varphi\', , em que L é um operador linear e limitado e \'varphi\' é uma função regrada, e uma certa classe de EDOs generalizadas lineares. Como consequência, obtemos uma fórmula da variação das constantes relacionando as soluções da EDF linear e as soluções do problema perturbado { \'y PONTO\' = L(t )\'y IND.t\' + f (\'yIND. t\' , \'y IND. t IND. 0\' = \'\\varphi \', em que a aplicação \'t SETA \' f (\'y IND. t\' , t) é Perron integrável, com t em um intervalo de R, para cada função regrada y |
| id |
USP_04a9a055c2e7772f5e2504e6c2db889f |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-24042014-165405 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais linearesLinear generalized ordinary differential equations and application to linear functional differential equationsEquações diferenciais funcionaisEquações diferenciais ordinárias generalizadasFórmula da variação das cnstantesFunctional differential equationsGeneralized ordinary differential equationsVariation of constants formulaNeste trabalho, apresentamos uma fórmula da variação das constantes para EDOs generalizadas lineares em espaços de Banach. Mais especificamente, estamos interessados em estabelecer uma relação entre as soluções do problema de Cauchy para uma EDO generalizada linear \'dx SUP. d \'tau\' =D[A(t )x], x(\'t IND. 0\') = \'x SOB. ~\' e as soluções do problema de Cauchy perturbado \'dx SUP. d \'tau\' =D[A(t )x +F(x, t )], x(\'t IND. 0\') = x(\'t IND. 0\') = \'x SOB. ~\' , em que as funções envolvidas são Perron integráveis e, portanto, admitem muitas descontinuidades e oscilações. Também provamos a existência de uma correspondência biunívoca entre o problema de Cauchy para uma EDF linear da forma { \' y PONTO\' =L(t )\'y IND. t\' , \'y IND. t IND. 0 = \\varphi\', , em que L é um operador linear e limitado e \'varphi\' é uma função regrada, e uma certa classe de EDOs generalizadas lineares. Como consequência, obtemos uma fórmula da variação das constantes relacionando as soluções da EDF linear e as soluções do problema perturbado { \'y PONTO\' = L(t )\'y IND.t\' + f (\'yIND. t\' , \'y IND. t IND. 0\' = \'\\varphi \', em que a aplicação \'t SETA \' f (\'y IND. t\' , t) é Perron integrável, com t em um intervalo de R, para cada função regrada yIn this work, we present a variation-of-constants formula for linear generalized ordinary differential equations in Banach spaces. More specifically, we are interested in establishing a relation between the solutions of the Cauchy problem for a linear generalized ordinary differential equation \'dx SUP. d \\tau\' =D[A(t )x], x(\'t IND. 0\') = x (\'t IND. 0\') = \'x SOB. ~\' and the solutions of the perturbed Cauchy problem \'dx SUP. \'d \\tau\' =D[A(t )x +F(x, t )], x(\'t IND. \'0) = \'x SOB.~\', where the functions involved are generalized Perron integrable and, hence, admit many discontinuities and oscillations. We also prove that there exists a one-to-one correspondence between the Cauchy problem for a linear functional differential equations of the form { \'y PONTO\' = L(t) \'y IND. t, \'y IND> 0 = \\varphi, where L is a bounded linear operator and \" is a regulated function, and a certain class of linear generalized ordinary differential equations. As a consequence, we are able to obtain a variation-of-constants formula relating the solutions of the linear functional differential equation and the solutions of the perturbed problem { \'y PONTO\' = L(T)\'y IND.t´+ f (\'y IND. t\', t), \'y IND.t IND. 0\' = \\varphi, where the application t \'ARROW\' f(\'y IND. t\', t) is Perron integrable, with t in an interval of R, for each regulated function yBiblioteca Digitais de Teses e Dissertações da USPFederson, Márcia Cristina Anderson BrazCollegari, Rodolfo2014-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55135/tde-24042014-165405/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:49Zoai:teses.usp.br:tde-24042014-165405Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:49Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares Linear generalized ordinary differential equations and application to linear functional differential equations |
| title |
Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares |
| spellingShingle |
Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares Collegari, Rodolfo Equações diferenciais funcionais Equações diferenciais ordinárias generalizadas Fórmula da variação das cnstantes Functional differential equations Generalized ordinary differential equations Variation of constants formula |
| title_short |
Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares |
| title_full |
Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares |
| title_fullStr |
Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares |
| title_full_unstemmed |
Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares |
| title_sort |
Equações diferenciais ordinárias generalizadas lineares e aplicações às equações diferenciais funcionais lineares |
| author |
Collegari, Rodolfo |
| author_facet |
Collegari, Rodolfo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Federson, Márcia Cristina Anderson Braz |
| dc.contributor.author.fl_str_mv |
Collegari, Rodolfo |
| dc.subject.por.fl_str_mv |
Equações diferenciais funcionais Equações diferenciais ordinárias generalizadas Fórmula da variação das cnstantes Functional differential equations Generalized ordinary differential equations Variation of constants formula |
| topic |
Equações diferenciais funcionais Equações diferenciais ordinárias generalizadas Fórmula da variação das cnstantes Functional differential equations Generalized ordinary differential equations Variation of constants formula |
| description |
Neste trabalho, apresentamos uma fórmula da variação das constantes para EDOs generalizadas lineares em espaços de Banach. Mais especificamente, estamos interessados em estabelecer uma relação entre as soluções do problema de Cauchy para uma EDO generalizada linear \'dx SUP. d \'tau\' =D[A(t )x], x(\'t IND. 0\') = \'x SOB. ~\' e as soluções do problema de Cauchy perturbado \'dx SUP. d \'tau\' =D[A(t )x +F(x, t )], x(\'t IND. 0\') = x(\'t IND. 0\') = \'x SOB. ~\' , em que as funções envolvidas são Perron integráveis e, portanto, admitem muitas descontinuidades e oscilações. Também provamos a existência de uma correspondência biunívoca entre o problema de Cauchy para uma EDF linear da forma { \' y PONTO\' =L(t )\'y IND. t\' , \'y IND. t IND. 0 = \\varphi\', , em que L é um operador linear e limitado e \'varphi\' é uma função regrada, e uma certa classe de EDOs generalizadas lineares. Como consequência, obtemos uma fórmula da variação das constantes relacionando as soluções da EDF linear e as soluções do problema perturbado { \'y PONTO\' = L(t )\'y IND.t\' + f (\'yIND. t\' , \'y IND. t IND. 0\' = \'\\varphi \', em que a aplicação \'t SETA \' f (\'y IND. t\' , t) é Perron integrável, com t em um intervalo de R, para cada função regrada y |
| publishDate |
2014 |
| dc.date.none.fl_str_mv |
2014-02-25 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-24042014-165405/ |
| url |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-24042014-165405/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258413996703744 |