Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Pedroso, Diego Frazatto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
LLM
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27082025-141523/
Resumo: Cloud computing technologies offer significant advantages in scalability and performance, enabling rapid deployment of applications. The adoption of microservices-oriented architectures has introduced an ecosystem characterized by an increased number of applications, frameworks, abstraction layers, orchestrators, and hypervisors, all operating within distributed systems. This complexity results in the generation of vast quantities of logs from diverse sources, making the analysis of these events an inherently challenging task, particularly in the absence of automation. To address this issue, Machine Learning techniques leveraging Large Language Models (LLMs) offer a promising approach for dynamically identifying patterns within these events. In this study, we propose a novel anomaly detection framework utilizing a microservices architecture deployed on Kubernetes and Istio, enhanced by an LLM model. The model was trained on various error scenarios, with Chaos Mesh employed as an error injection tool to simulate faults of different natures, and Locust used as a load generator to create workload stress conditions. After an anomaly is detected by the LLM model, we employ a dynamic Bayesian network to provide probabilistic inferences about the incident, proving the relationships between components and assessing the degree of impact among them. Additionally, a ChatBot powered by the same LLM model allows users to interact with the AI, ask questions about the detected incident, and gain deeper insights. The experimental results demonstrated the models effectiveness, reliably identifying all error events across various test scenarios. While it successfully avoided missing any anomalies, it did produce some false positives, which remain within acceptable limits.
id USP_04c3bbbf206f44b1872332a16f5314e3
oai_identifier_str oai:teses.usp.br:tde-27082025-141523
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian NetworksDetecção de anomalias e análise de causa raiz em ambientes nativos da nuvem usando LLM\'s e redes bayesianasAutomated root cause analysisBayesian networksCloud computingComputação em nuvemDetecção de anomaliasLLMLLMRedes bayesianasCloud computing technologies offer significant advantages in scalability and performance, enabling rapid deployment of applications. The adoption of microservices-oriented architectures has introduced an ecosystem characterized by an increased number of applications, frameworks, abstraction layers, orchestrators, and hypervisors, all operating within distributed systems. This complexity results in the generation of vast quantities of logs from diverse sources, making the analysis of these events an inherently challenging task, particularly in the absence of automation. To address this issue, Machine Learning techniques leveraging Large Language Models (LLMs) offer a promising approach for dynamically identifying patterns within these events. In this study, we propose a novel anomaly detection framework utilizing a microservices architecture deployed on Kubernetes and Istio, enhanced by an LLM model. The model was trained on various error scenarios, with Chaos Mesh employed as an error injection tool to simulate faults of different natures, and Locust used as a load generator to create workload stress conditions. After an anomaly is detected by the LLM model, we employ a dynamic Bayesian network to provide probabilistic inferences about the incident, proving the relationships between components and assessing the degree of impact among them. Additionally, a ChatBot powered by the same LLM model allows users to interact with the AI, ask questions about the detected incident, and gain deeper insights. The experimental results demonstrated the models effectiveness, reliably identifying all error events across various test scenarios. While it successfully avoided missing any anomalies, it did produce some false positives, which remain within acceptable limits.As tecnologias de computação em nuvem oferecem vantagens significativas em escalabilidade e desempenho, permitindo a rápida implantação de aplicativos. No entanto, a crescente complexidade dos sistemas nativos da nuvem introduz riscos de confiabilidade. Lidar com esses riscos é uma responsabilidade essencial dos provedores de serviços de TI, pois eles desempenham um papel crítico na manutenção da estabilidade do sistema e na garantia da entrega confiável de serviços. Essa complexidade resulta na geração de grandes quantidades de logs de diversas fontes, tornando a análise desses eventos uma tarefa inerentemente desafiadora, principalmente na ausência de automação. Para resolver esse problema, as técnicas de Machine Learning que utilizam Large Language Models (LLMs) oferecem uma abordagem promissora para identificar dinamicamente padrões dentro desses eventos. Neste estudo, propomos uma nova estrutura de detecção de anomalias utilizando uma arquitetura de microsserviços implantada no Kubernetes e Istio, aprimorada por um modelo LLM. O modelo foi treinado em vários cenários de erro, com o Chaos Mesh empregado como uma ferramenta de injeção de erro para simular falhas de diferentes naturezas, e o Locust usado como um gerador de carga para criar condições de estresse de carga de trabalho. Depois que uma anomalia é detectada pelo modelo LLM, empregamos uma rede bayesiana dinâmica para fornecer inferências probabilísticas sobre o incidente, provando as relações entre os componentes e avaliando o grau de impacto entre eles. Além disso, um ChatBot alimentado pelo mesmo modelo LLM permite que os usuários interajam com a IA, façam perguntas sobre o incidente detectado e obtenham insights mais profundos. Os resultados experimentais demonstraram a eficácia do modelo, identificando de forma confiável todos os eventos de erro em vários cenários de teste. Embora tenha evitado com sucesso a falta de anomalias, ele produziu alguns falsos positivos, que permanecem dentro dos limites aceitáveis.Biblioteca Digitais de Teses e Dissertações da USPBruschi, Sarita MazziniPedroso, Diego Frazatto2025-04-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-27082025-141523/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-08-27T17:21:02Zoai:teses.usp.br:tde-27082025-141523Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-08-27T17:21:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks
Detecção de anomalias e análise de causa raiz em ambientes nativos da nuvem usando LLM\'s e redes bayesianas
title Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks
spellingShingle Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks
Pedroso, Diego Frazatto
Automated root cause analysis
Bayesian networks
Cloud computing
Computação em nuvem
Detecção de anomalias
LLM
LLM
Redes bayesianas
title_short Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks
title_full Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks
title_fullStr Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks
title_full_unstemmed Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks
title_sort Anomaly Detection and Root Cause Analysis in Cloud-Native Environments Using Large Language Models and Bayesian Networks
author Pedroso, Diego Frazatto
author_facet Pedroso, Diego Frazatto
author_role author
dc.contributor.none.fl_str_mv Bruschi, Sarita Mazzini
dc.contributor.author.fl_str_mv Pedroso, Diego Frazatto
dc.subject.por.fl_str_mv Automated root cause analysis
Bayesian networks
Cloud computing
Computação em nuvem
Detecção de anomalias
LLM
LLM
Redes bayesianas
topic Automated root cause analysis
Bayesian networks
Cloud computing
Computação em nuvem
Detecção de anomalias
LLM
LLM
Redes bayesianas
description Cloud computing technologies offer significant advantages in scalability and performance, enabling rapid deployment of applications. The adoption of microservices-oriented architectures has introduced an ecosystem characterized by an increased number of applications, frameworks, abstraction layers, orchestrators, and hypervisors, all operating within distributed systems. This complexity results in the generation of vast quantities of logs from diverse sources, making the analysis of these events an inherently challenging task, particularly in the absence of automation. To address this issue, Machine Learning techniques leveraging Large Language Models (LLMs) offer a promising approach for dynamically identifying patterns within these events. In this study, we propose a novel anomaly detection framework utilizing a microservices architecture deployed on Kubernetes and Istio, enhanced by an LLM model. The model was trained on various error scenarios, with Chaos Mesh employed as an error injection tool to simulate faults of different natures, and Locust used as a load generator to create workload stress conditions. After an anomaly is detected by the LLM model, we employ a dynamic Bayesian network to provide probabilistic inferences about the incident, proving the relationships between components and assessing the degree of impact among them. Additionally, a ChatBot powered by the same LLM model allows users to interact with the AI, ask questions about the detected incident, and gain deeper insights. The experimental results demonstrated the models effectiveness, reliably identifying all error events across various test scenarios. While it successfully avoided missing any anomalies, it did produce some false positives, which remain within acceptable limits.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27082025-141523/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-27082025-141523/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1848370491251752960