Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Silva Junior, Ricardo Augusto da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3142/tde-25032019-153207/
Resumo: A geração e o uso dos mapas de ambiente de rádio (REM - Radio Environment Map) em sistemas de comunicações sem fio vêm sendo alvo de pesquisas recentes na literatura científica. Dentre as possíveis aplicações, o REM fornece informações importantes para os processos de predição e otimização de cobertura em sistemas de comunicações sem fio, pois é baseado em medidas coletadas diretamente da rede. Neste contexto, a geração do REM depende do processamento das medidas e suas localizações para a construção dos mapas, por meio de predições espaciais. Entretanto, a incerteza de localização das medidas coletadas pode degradar a acurácia das predições de forma significativa e, consequentemente, impactar as posteriores decições baseadas no REM. Este trabalho aborda o problema de geração do REM de forma mais realística, formulando um modelo de predição espacial que introduz erros de localização no ambiente de rádio de um sistema de comunicação sem fio. As investigações mostram que os impactos provocados pela incerteza de localização na geração do REM são significativos, especialmente nas técnicas de estimação utilizadas para a aprendizagem de parâmetros do modelo de predição espacial. Com isso, uma técnica de predição espacial é proposta e utiliza ferramentas da área geoestatística para superar os efeitos negativos causados pela incerteza de localização nas medidas. Simulações computacionais são desenvolvidas para a avaliação de desempenho das principais técnicas de predição no contexto de geração do REM, considerando o problema da incerteza de localização. Os resultados de simulação da técnica proposta são promissores e mostram que levar em conta a distribuição estatística dos erros de localização pode resultar em predições com maior acurácia para a geração do REM. A influência de diferentes aspectos da modelagem do ambiente de rádio também é analisada e reforçam a ideia de que a aprendizagem de parâmetros do ambiente de rádio tem um papel importante na acurácia das predições espaciais, que são fundamentais para a geração confiável do REM. Finalmente, um estudo experimental do REM é realizado por meio de uma campanha de medidas, permitindo explorar o desempenho dos algoritmos de aprendizagem de parâmetros e predições desenvolvidos neste trabalho.
id USP_07cca5c176c563c4cb4bc3942eab090a
oai_identifier_str oai:teses.usp.br:tde-25032019-153207
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.Generation of radio environment maps in wireless communications systems with location uncertainly.Gaussian processGeoestatísticaGeostatisticsLocation uncertaintyProcessamento de sinaisRadio environment mapspatial predictionsWirelessA geração e o uso dos mapas de ambiente de rádio (REM - Radio Environment Map) em sistemas de comunicações sem fio vêm sendo alvo de pesquisas recentes na literatura científica. Dentre as possíveis aplicações, o REM fornece informações importantes para os processos de predição e otimização de cobertura em sistemas de comunicações sem fio, pois é baseado em medidas coletadas diretamente da rede. Neste contexto, a geração do REM depende do processamento das medidas e suas localizações para a construção dos mapas, por meio de predições espaciais. Entretanto, a incerteza de localização das medidas coletadas pode degradar a acurácia das predições de forma significativa e, consequentemente, impactar as posteriores decições baseadas no REM. Este trabalho aborda o problema de geração do REM de forma mais realística, formulando um modelo de predição espacial que introduz erros de localização no ambiente de rádio de um sistema de comunicação sem fio. As investigações mostram que os impactos provocados pela incerteza de localização na geração do REM são significativos, especialmente nas técnicas de estimação utilizadas para a aprendizagem de parâmetros do modelo de predição espacial. Com isso, uma técnica de predição espacial é proposta e utiliza ferramentas da área geoestatística para superar os efeitos negativos causados pela incerteza de localização nas medidas. Simulações computacionais são desenvolvidas para a avaliação de desempenho das principais técnicas de predição no contexto de geração do REM, considerando o problema da incerteza de localização. Os resultados de simulação da técnica proposta são promissores e mostram que levar em conta a distribuição estatística dos erros de localização pode resultar em predições com maior acurácia para a geração do REM. A influência de diferentes aspectos da modelagem do ambiente de rádio também é analisada e reforçam a ideia de que a aprendizagem de parâmetros do ambiente de rádio tem um papel importante na acurácia das predições espaciais, que são fundamentais para a geração confiável do REM. Finalmente, um estudo experimental do REM é realizado por meio de uma campanha de medidas, permitindo explorar o desempenho dos algoritmos de aprendizagem de parâmetros e predições desenvolvidos neste trabalho.The generation and use of radio environment maps (REM) in wireless systems has been the subject of recent research in the scientific literature. Among the possible applications, the REM provides important information for the coverage predicfition and optimization processes in wireless systems, since it is based on measurements collected directly on the network. In this context, the REM generation process depends on the processing of the measurements and their locations for the construction of the maps through spatial predictions. However, the location uncertainty related to the measurements collected can signicantly degrade the accuracy of the spatial predictions and, consequently, impact the decisions based on REM. This work addresses the problem of the REM generation in a more realistic way, through the formulation of a spatial prediction model that introduces location errors in the radio environment of a wireless communication system. The investigations show that the impacts of the location uncertainty on the REM generation are significant, especially in the estimation techniques used to learn the parameters of the spatial prediction model. Thus, a spatial prediction technique is proposed, based on geostatistical tools, to overcome the negative effects caused by the location uncertainty of the REM measurements. Computational simulations are developed for the performance evaluation of the main prediction techniques in the context of REM generation, considering the problem of location uncertainty. The simulation results of the proposed technique are promising and show that taking into account the statistical distribution of location errors can result in more accurate predictions for the REM generation process. The influence of different aspects of the radio environment modeling is also analyzed and reinforce the idea that the learning of radio environment parameters plays an important role in the accuracy of spatial predictions, which are fundamental for the reliable REM generation. Finally, an experimental study is carried out through a measurement campaign with the purpose of generating the REM in practice and to explore the performance of the learning and prediction algorithms developed in this work.Biblioteca Digitais de Teses e Dissertações da USPPanazio, Cristiano MagalhaesSilva Junior, Ricardo Augusto da2018-12-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3142/tde-25032019-153207/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-10T00:06:19Zoai:teses.usp.br:tde-25032019-153207Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-10T00:06:19Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.
Generation of radio environment maps in wireless communications systems with location uncertainly.
title Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.
spellingShingle Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.
Silva Junior, Ricardo Augusto da
Gaussian process
Geoestatística
Geostatistics
Location uncertainty
Processamento de sinais
Radio environment map
spatial predictions
Wireless
title_short Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.
title_full Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.
title_fullStr Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.
title_full_unstemmed Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.
title_sort Geração de mapas de ambiente de rádio em sistemas de comunicações sem fio com incerteza de localização.
author Silva Junior, Ricardo Augusto da
author_facet Silva Junior, Ricardo Augusto da
author_role author
dc.contributor.none.fl_str_mv Panazio, Cristiano Magalhaes
dc.contributor.author.fl_str_mv Silva Junior, Ricardo Augusto da
dc.subject.por.fl_str_mv Gaussian process
Geoestatística
Geostatistics
Location uncertainty
Processamento de sinais
Radio environment map
spatial predictions
Wireless
topic Gaussian process
Geoestatística
Geostatistics
Location uncertainty
Processamento de sinais
Radio environment map
spatial predictions
Wireless
description A geração e o uso dos mapas de ambiente de rádio (REM - Radio Environment Map) em sistemas de comunicações sem fio vêm sendo alvo de pesquisas recentes na literatura científica. Dentre as possíveis aplicações, o REM fornece informações importantes para os processos de predição e otimização de cobertura em sistemas de comunicações sem fio, pois é baseado em medidas coletadas diretamente da rede. Neste contexto, a geração do REM depende do processamento das medidas e suas localizações para a construção dos mapas, por meio de predições espaciais. Entretanto, a incerteza de localização das medidas coletadas pode degradar a acurácia das predições de forma significativa e, consequentemente, impactar as posteriores decições baseadas no REM. Este trabalho aborda o problema de geração do REM de forma mais realística, formulando um modelo de predição espacial que introduz erros de localização no ambiente de rádio de um sistema de comunicação sem fio. As investigações mostram que os impactos provocados pela incerteza de localização na geração do REM são significativos, especialmente nas técnicas de estimação utilizadas para a aprendizagem de parâmetros do modelo de predição espacial. Com isso, uma técnica de predição espacial é proposta e utiliza ferramentas da área geoestatística para superar os efeitos negativos causados pela incerteza de localização nas medidas. Simulações computacionais são desenvolvidas para a avaliação de desempenho das principais técnicas de predição no contexto de geração do REM, considerando o problema da incerteza de localização. Os resultados de simulação da técnica proposta são promissores e mostram que levar em conta a distribuição estatística dos erros de localização pode resultar em predições com maior acurácia para a geração do REM. A influência de diferentes aspectos da modelagem do ambiente de rádio também é analisada e reforçam a ideia de que a aprendizagem de parâmetros do ambiente de rádio tem um papel importante na acurácia das predições espaciais, que são fundamentais para a geração confiável do REM. Finalmente, um estudo experimental do REM é realizado por meio de uma campanha de medidas, permitindo explorar o desempenho dos algoritmos de aprendizagem de parâmetros e predições desenvolvidos neste trabalho.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3142/tde-25032019-153207/
url http://www.teses.usp.br/teses/disponiveis/3/3142/tde-25032019-153207/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258435036381184