The bivariate integer-valued GARCH model: a Bayesian estimation framework

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Verges, Yuri
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45133/tde-23102019-140244/
Resumo: An extensive literature has been developed on counting data in recent years, and the contribution that seeks the multivariate approach to this problem is still small. This paper aims to analyze in greater depth and perform the Bayesian estimation of the bivariate INGARCH model proposed in Cui and Zhu [2017], where the autoregression studied in Liu [2012] is extended to treat negatively correlated events. Since the probability function proposed in Lakshminarayana et al. [1999] demands some attention to the non-infringement of the probability axioms, a thorough analysis of this new distribution has been performed. For the Bayesian estimation procedure, the Random Walk Metropolis-Hastings algorithm was applied, and tunning was chosen as in one of Bennett et al. [1996] approaches. An exhaustive analysis on simulated data was performed for the real understanding of how the proposed model behaves, and, aiming at the application in real data, a study on the Pittsburgh crime data and another on the number of trades for the futures contracts of Euro and British Pound at traded CME (Chigado Mechandile Exchange) were implemented.
id USP_100926aedc9b75009255f9dc577dbd21
oai_identifier_str oai:teses.usp.br:tde-23102019-140244
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling The bivariate integer-valued GARCH model: a Bayesian estimation frameworkO modelo bivariado GARCH inteiro: uma abordagem BayesianaBayesian inferenceCounting data problem/INGARCHInferência BayesianaModelagem de correlação negativaNegative correlation modelingProblema de dados de contagem/GARCH inteiroAn extensive literature has been developed on counting data in recent years, and the contribution that seeks the multivariate approach to this problem is still small. This paper aims to analyze in greater depth and perform the Bayesian estimation of the bivariate INGARCH model proposed in Cui and Zhu [2017], where the autoregression studied in Liu [2012] is extended to treat negatively correlated events. Since the probability function proposed in Lakshminarayana et al. [1999] demands some attention to the non-infringement of the probability axioms, a thorough analysis of this new distribution has been performed. For the Bayesian estimation procedure, the Random Walk Metropolis-Hastings algorithm was applied, and tunning was chosen as in one of Bennett et al. [1996] approaches. An exhaustive analysis on simulated data was performed for the real understanding of how the proposed model behaves, and, aiming at the application in real data, a study on the Pittsburgh crime data and another on the number of trades for the futures contracts of Euro and British Pound at traded CME (Chigado Mechandile Exchange) were implemented.Uma extensa literatura tem se desenvolvido sobre dados de contagem nos últimos anos, sendo ainda, pequena a contribuição que busca a abordagem multivariada desse problema. Este trabalho têm como objetivo analisar em maior profundidade e realizar a estimação bayesiana do modelo bivariado INGARCH proposto em Cui and Zhu [2017], onde a autoregressão estudada em Liu [2012] é estendida de forma a tratar eventos negativamente correlacionados. Uma vez que a função de probabilidade proposta em Lakshminarayana et al. [1999] demanda certa atenção para a não infração dos axiomas da probabilidade, uma análise minuciosa sobre esta nova distribuição foi executada. Para o procedimento de estimação Bayesiana, foi aplicado o algoritmo de Random Walk Metropolis-Hastings, sendo o tunning escolhido como em uma das abordagens em Bennett et al. [1996]. Uma análise exaustiva em dados simulados foi desempenhada para o real entendimento de como se comporta o modelo proposto e, objetivando a aplicação em dados reais, um estudo sobre os dados de criminalidade de Pittsburgh e outro sobre os números de negócios realizados para os contratos futuros de Euro e Libra Esterlina negociados na CME (Chigado Mechandile Exchange) foram efetuados.Biblioteca Digitais de Teses e Dissertações da USPLopes, Hedibert FreitasVerges, Yuri2019-09-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-23102019-140244/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-16T20:32:02Zoai:teses.usp.br:tde-23102019-140244Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T20:32:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv The bivariate integer-valued GARCH model: a Bayesian estimation framework
O modelo bivariado GARCH inteiro: uma abordagem Bayesiana
title The bivariate integer-valued GARCH model: a Bayesian estimation framework
spellingShingle The bivariate integer-valued GARCH model: a Bayesian estimation framework
Verges, Yuri
Bayesian inference
Counting data problem/INGARCH
Inferência Bayesiana
Modelagem de correlação negativa
Negative correlation modeling
Problema de dados de contagem/GARCH inteiro
title_short The bivariate integer-valued GARCH model: a Bayesian estimation framework
title_full The bivariate integer-valued GARCH model: a Bayesian estimation framework
title_fullStr The bivariate integer-valued GARCH model: a Bayesian estimation framework
title_full_unstemmed The bivariate integer-valued GARCH model: a Bayesian estimation framework
title_sort The bivariate integer-valued GARCH model: a Bayesian estimation framework
author Verges, Yuri
author_facet Verges, Yuri
author_role author
dc.contributor.none.fl_str_mv Lopes, Hedibert Freitas
dc.contributor.author.fl_str_mv Verges, Yuri
dc.subject.por.fl_str_mv Bayesian inference
Counting data problem/INGARCH
Inferência Bayesiana
Modelagem de correlação negativa
Negative correlation modeling
Problema de dados de contagem/GARCH inteiro
topic Bayesian inference
Counting data problem/INGARCH
Inferência Bayesiana
Modelagem de correlação negativa
Negative correlation modeling
Problema de dados de contagem/GARCH inteiro
description An extensive literature has been developed on counting data in recent years, and the contribution that seeks the multivariate approach to this problem is still small. This paper aims to analyze in greater depth and perform the Bayesian estimation of the bivariate INGARCH model proposed in Cui and Zhu [2017], where the autoregression studied in Liu [2012] is extended to treat negatively correlated events. Since the probability function proposed in Lakshminarayana et al. [1999] demands some attention to the non-infringement of the probability axioms, a thorough analysis of this new distribution has been performed. For the Bayesian estimation procedure, the Random Walk Metropolis-Hastings algorithm was applied, and tunning was chosen as in one of Bennett et al. [1996] approaches. An exhaustive analysis on simulated data was performed for the real understanding of how the proposed model behaves, and, aiming at the application in real data, a study on the Pittsburgh crime data and another on the number of trades for the futures contracts of Euro and British Pound at traded CME (Chigado Mechandile Exchange) were implemented.
publishDate 2019
dc.date.none.fl_str_mv 2019-09-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45133/tde-23102019-140244/
url https://www.teses.usp.br/teses/disponiveis/45/45133/tde-23102019-140244/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258478859517952