The bivariate integer-valued GARCH model: a Bayesian estimation framework
| Ano de defesa: | 2019 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45133/tde-23102019-140244/ |
Resumo: | An extensive literature has been developed on counting data in recent years, and the contribution that seeks the multivariate approach to this problem is still small. This paper aims to analyze in greater depth and perform the Bayesian estimation of the bivariate INGARCH model proposed in Cui and Zhu [2017], where the autoregression studied in Liu [2012] is extended to treat negatively correlated events. Since the probability function proposed in Lakshminarayana et al. [1999] demands some attention to the non-infringement of the probability axioms, a thorough analysis of this new distribution has been performed. For the Bayesian estimation procedure, the Random Walk Metropolis-Hastings algorithm was applied, and tunning was chosen as in one of Bennett et al. [1996] approaches. An exhaustive analysis on simulated data was performed for the real understanding of how the proposed model behaves, and, aiming at the application in real data, a study on the Pittsburgh crime data and another on the number of trades for the futures contracts of Euro and British Pound at traded CME (Chigado Mechandile Exchange) were implemented. |
| id |
USP_100926aedc9b75009255f9dc577dbd21 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-23102019-140244 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
The bivariate integer-valued GARCH model: a Bayesian estimation frameworkO modelo bivariado GARCH inteiro: uma abordagem BayesianaBayesian inferenceCounting data problem/INGARCHInferência BayesianaModelagem de correlação negativaNegative correlation modelingProblema de dados de contagem/GARCH inteiroAn extensive literature has been developed on counting data in recent years, and the contribution that seeks the multivariate approach to this problem is still small. This paper aims to analyze in greater depth and perform the Bayesian estimation of the bivariate INGARCH model proposed in Cui and Zhu [2017], where the autoregression studied in Liu [2012] is extended to treat negatively correlated events. Since the probability function proposed in Lakshminarayana et al. [1999] demands some attention to the non-infringement of the probability axioms, a thorough analysis of this new distribution has been performed. For the Bayesian estimation procedure, the Random Walk Metropolis-Hastings algorithm was applied, and tunning was chosen as in one of Bennett et al. [1996] approaches. An exhaustive analysis on simulated data was performed for the real understanding of how the proposed model behaves, and, aiming at the application in real data, a study on the Pittsburgh crime data and another on the number of trades for the futures contracts of Euro and British Pound at traded CME (Chigado Mechandile Exchange) were implemented.Uma extensa literatura tem se desenvolvido sobre dados de contagem nos últimos anos, sendo ainda, pequena a contribuição que busca a abordagem multivariada desse problema. Este trabalho têm como objetivo analisar em maior profundidade e realizar a estimação bayesiana do modelo bivariado INGARCH proposto em Cui and Zhu [2017], onde a autoregressão estudada em Liu [2012] é estendida de forma a tratar eventos negativamente correlacionados. Uma vez que a função de probabilidade proposta em Lakshminarayana et al. [1999] demanda certa atenção para a não infração dos axiomas da probabilidade, uma análise minuciosa sobre esta nova distribuição foi executada. Para o procedimento de estimação Bayesiana, foi aplicado o algoritmo de Random Walk Metropolis-Hastings, sendo o tunning escolhido como em uma das abordagens em Bennett et al. [1996]. Uma análise exaustiva em dados simulados foi desempenhada para o real entendimento de como se comporta o modelo proposto e, objetivando a aplicação em dados reais, um estudo sobre os dados de criminalidade de Pittsburgh e outro sobre os números de negócios realizados para os contratos futuros de Euro e Libra Esterlina negociados na CME (Chigado Mechandile Exchange) foram efetuados.Biblioteca Digitais de Teses e Dissertações da USPLopes, Hedibert FreitasVerges, Yuri2019-09-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45133/tde-23102019-140244/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-16T20:32:02Zoai:teses.usp.br:tde-23102019-140244Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-16T20:32:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
The bivariate integer-valued GARCH model: a Bayesian estimation framework O modelo bivariado GARCH inteiro: uma abordagem Bayesiana |
| title |
The bivariate integer-valued GARCH model: a Bayesian estimation framework |
| spellingShingle |
The bivariate integer-valued GARCH model: a Bayesian estimation framework Verges, Yuri Bayesian inference Counting data problem/INGARCH Inferência Bayesiana Modelagem de correlação negativa Negative correlation modeling Problema de dados de contagem/GARCH inteiro |
| title_short |
The bivariate integer-valued GARCH model: a Bayesian estimation framework |
| title_full |
The bivariate integer-valued GARCH model: a Bayesian estimation framework |
| title_fullStr |
The bivariate integer-valued GARCH model: a Bayesian estimation framework |
| title_full_unstemmed |
The bivariate integer-valued GARCH model: a Bayesian estimation framework |
| title_sort |
The bivariate integer-valued GARCH model: a Bayesian estimation framework |
| author |
Verges, Yuri |
| author_facet |
Verges, Yuri |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Lopes, Hedibert Freitas |
| dc.contributor.author.fl_str_mv |
Verges, Yuri |
| dc.subject.por.fl_str_mv |
Bayesian inference Counting data problem/INGARCH Inferência Bayesiana Modelagem de correlação negativa Negative correlation modeling Problema de dados de contagem/GARCH inteiro |
| topic |
Bayesian inference Counting data problem/INGARCH Inferência Bayesiana Modelagem de correlação negativa Negative correlation modeling Problema de dados de contagem/GARCH inteiro |
| description |
An extensive literature has been developed on counting data in recent years, and the contribution that seeks the multivariate approach to this problem is still small. This paper aims to analyze in greater depth and perform the Bayesian estimation of the bivariate INGARCH model proposed in Cui and Zhu [2017], where the autoregression studied in Liu [2012] is extended to treat negatively correlated events. Since the probability function proposed in Lakshminarayana et al. [1999] demands some attention to the non-infringement of the probability axioms, a thorough analysis of this new distribution has been performed. For the Bayesian estimation procedure, the Random Walk Metropolis-Hastings algorithm was applied, and tunning was chosen as in one of Bennett et al. [1996] approaches. An exhaustive analysis on simulated data was performed for the real understanding of how the proposed model behaves, and, aiming at the application in real data, a study on the Pittsburgh crime data and another on the number of trades for the futures contracts of Euro and British Pound at traded CME (Chigado Mechandile Exchange) were implemented. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-09-10 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-23102019-140244/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45133/tde-23102019-140244/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258478859517952 |