Some mathematical aspects of DAG-based distributed Ledger systems
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06012023-194249/ |
Resumo: | In the first part of this work, we present, model and analyze a randomized automated peering model, that can be implemented to any distributed system. We conclude that the scheme has some desirable properties (specifically, a reasonable message overhead, a reasonable distribution of the numbers of peers of a node, and a negligible probability of an attack by a malicious actor to be successful). In the second part, we present an article published in the volume 136 of the journal Computers & Industrial Engineering, in October of 2019 (DOI 10.1016=j.cie.2019.07.025). In the paper, we analyze the Nash Equilibria of a graph attachment game, defined to represent the different strategies that malicious actors can use to take certain advantages in a DAG-based (i.e., based on Directed Acyclic Graphs) distributed ledger system. We prove the existence of almost symmetric Nash equilibria for the system where a part of players tries to optimize their attachment strategies and another part follows a default one. We also present simulations that show that the selfish players will not choose strategies that are considerably different that the recommended one. |
| id |
USP_16c35feea1c742ba0f2662704a0b8abe |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-06012023-194249 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Some mathematical aspects of DAG-based distributed Ledger systemsAspectos matemáticos diversos sobre sistemas de Ledger distribuído baseados em DAGsDistributed systemsDLTDLTEquilíbrio de NashNash equilibriaSistemas distribuídosTangleTangleIn the first part of this work, we present, model and analyze a randomized automated peering model, that can be implemented to any distributed system. We conclude that the scheme has some desirable properties (specifically, a reasonable message overhead, a reasonable distribution of the numbers of peers of a node, and a negligible probability of an attack by a malicious actor to be successful). In the second part, we present an article published in the volume 136 of the journal Computers & Industrial Engineering, in October of 2019 (DOI 10.1016=j.cie.2019.07.025). In the paper, we analyze the Nash Equilibria of a graph attachment game, defined to represent the different strategies that malicious actors can use to take certain advantages in a DAG-based (i.e., based on Directed Acyclic Graphs) distributed ledger system. We prove the existence of almost symmetric Nash equilibria for the system where a part of players tries to optimize their attachment strategies and another part follows a default one. We also present simulations that show that the selfish players will not choose strategies that are considerably different that the recommended one.Na primeira parte do presente trabalho, um sistema de peering automático e aleatório é apresentado, modelado e analisado. Este sistema pode ser implementado em qualquer sistema distribuído. Concluímos que ele possui certas propriedades desejáveis (especificamente, um fluxo baixo de mensagens entre os agentes, uma distribuição razoável do número de conexões de cada nó e uma probabilidade desprezável de ser atacado). Na segunda parte do trabalho, apresentamos um artigo publicado no volume 136 do periódico Computers & Industrial Engineering, de outubro de 2019 (DOI 10.1016=j.cie.2019.07.025). Neste paper, analisamos os equilíbrios de Nash de um jogo definido de tal maneira a representar as diferentes estratégias que participantes maliciosos podem utilizar para obter certas vantagens em um sistema de Ledger distribuído baseado em DAGs (Directed Acyclic Graphs). Provamos a existência de equilíbrios quase simétricos para o sistema no qual uma parte dos jogadores usa uma estratégia padronizada e a outra parte tenta otimizar sua estratégia. Também são apresentadas simulações que apontam que os atores egoístas não escolherão estratégias excessivamente diferentes das estratégias padrão.Biblioteca Digitais de Teses e Dissertações da USPCarvalho, André Salles dePopov, SergueiSaa, Olívia Terence2020-07-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45132/tde-06012023-194249/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-01-09T15:34:32Zoai:teses.usp.br:tde-06012023-194249Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-01-09T15:34:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Some mathematical aspects of DAG-based distributed Ledger systems Aspectos matemáticos diversos sobre sistemas de Ledger distribuído baseados em DAGs |
| title |
Some mathematical aspects of DAG-based distributed Ledger systems |
| spellingShingle |
Some mathematical aspects of DAG-based distributed Ledger systems Saa, Olívia Terence Distributed systems DLT DLT Equilíbrio de Nash Nash equilibria Sistemas distribuídos Tangle Tangle |
| title_short |
Some mathematical aspects of DAG-based distributed Ledger systems |
| title_full |
Some mathematical aspects of DAG-based distributed Ledger systems |
| title_fullStr |
Some mathematical aspects of DAG-based distributed Ledger systems |
| title_full_unstemmed |
Some mathematical aspects of DAG-based distributed Ledger systems |
| title_sort |
Some mathematical aspects of DAG-based distributed Ledger systems |
| author |
Saa, Olívia Terence |
| author_facet |
Saa, Olívia Terence |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Carvalho, André Salles de Popov, Serguei |
| dc.contributor.author.fl_str_mv |
Saa, Olívia Terence |
| dc.subject.por.fl_str_mv |
Distributed systems DLT DLT Equilíbrio de Nash Nash equilibria Sistemas distribuídos Tangle Tangle |
| topic |
Distributed systems DLT DLT Equilíbrio de Nash Nash equilibria Sistemas distribuídos Tangle Tangle |
| description |
In the first part of this work, we present, model and analyze a randomized automated peering model, that can be implemented to any distributed system. We conclude that the scheme has some desirable properties (specifically, a reasonable message overhead, a reasonable distribution of the numbers of peers of a node, and a negligible probability of an attack by a malicious actor to be successful). In the second part, we present an article published in the volume 136 of the journal Computers & Industrial Engineering, in October of 2019 (DOI 10.1016=j.cie.2019.07.025). In the paper, we analyze the Nash Equilibria of a graph attachment game, defined to represent the different strategies that malicious actors can use to take certain advantages in a DAG-based (i.e., based on Directed Acyclic Graphs) distributed ledger system. We prove the existence of almost symmetric Nash equilibria for the system where a part of players tries to optimize their attachment strategies and another part follows a default one. We also present simulations that show that the selfish players will not choose strategies that are considerably different that the recommended one. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-07-06 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06012023-194249/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45132/tde-06012023-194249/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257934753431552 |