Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-Risk

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Gaio, Luiz Eduardo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/96/96132/tde-03052010-173001/
Resumo: Durante os últimos anos, tem havido muitas mudanças na maneira como as instituições financeiras avaliam o risco. As regulações têm tido um papel muito importante no desenvolvimento das técnicas de medição do risco. Diante das diversidades de técnicas de estimação e análise de risco utilizadas pelas bolsas de valores e de futuros, nacionais e internacionais, bem como as Clearings de controle de risco, este estudo propôs uma análise comparativo de modelos de volatilidade para o cálculo do Value-at-Risk (VaR) aplicados aos principais índices de ações do mercado financeiro internacional. Utilizouse os modelos de volatilidade condicional da família ARCH levando em consideração a presença de longa dependência em seus retornos (memória longa) e assimetria na volatilidade. Em específico, utilizaram-se os modelos GARCH, EGARCH, APARCH, FIGARCH, FIEGARCH, FIAPARCH e HYGARCH estimados a parir de quatro diferentes distribuições, Normal, t-Student, G.E.D. e t-Student Assimétrica. Analisaramse os índices dos principais mercados de ações do mundo, sendo: Dow Jones, S&P 500, Nasdaq, Ibovespa, FTSE e Nikkei 225. Testou-se também a capacidade preditiva do modelo Riskmetrics desenvolvido pelo J.P. Morgan para o calculo do VaR, comparado com os modelos de volatilidade. Os resultados obtidos sugerem que o pacote desenvolvido pelo J.P.Morgan não se aplica adequadamente à realidade do mercado acionário mundial, como ferramenta de gestão e controle do risco das oscilações dos preços das ações de empresas negociadas nas bolsas de Nova Iorque, Nasdaq, BM&FBOVESPA, bolsa de Londres e bolsa de Tóquio. Os modelos que consideram o efeito de memória longa na volatilidade condicional dos retornos dos índices, em especial o modelo FIAPARCH (1,d,1), foram os que obtiveram melhor ajuste e desempenho preditivo do risco de mercado (Value-at-Risk), conforme valores apresentados pelo teste de razão de falha proposto por Kupiec (1995).
id USP_18b9a781736fa24d1bfd9fc1cb4e88fd
oai_identifier_str oai:teses.usp.br:tde-03052010-173001
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-RiskRisk management in international financial market: a comparative analyze between volatility models to Value-at-Risk estimationARCH modelsGestão de riscoMercado de capitaisModelos ARCHRisk managementStock marketValue-at-RiskValue-at-RiskDurante os últimos anos, tem havido muitas mudanças na maneira como as instituições financeiras avaliam o risco. As regulações têm tido um papel muito importante no desenvolvimento das técnicas de medição do risco. Diante das diversidades de técnicas de estimação e análise de risco utilizadas pelas bolsas de valores e de futuros, nacionais e internacionais, bem como as Clearings de controle de risco, este estudo propôs uma análise comparativo de modelos de volatilidade para o cálculo do Value-at-Risk (VaR) aplicados aos principais índices de ações do mercado financeiro internacional. Utilizouse os modelos de volatilidade condicional da família ARCH levando em consideração a presença de longa dependência em seus retornos (memória longa) e assimetria na volatilidade. Em específico, utilizaram-se os modelos GARCH, EGARCH, APARCH, FIGARCH, FIEGARCH, FIAPARCH e HYGARCH estimados a parir de quatro diferentes distribuições, Normal, t-Student, G.E.D. e t-Student Assimétrica. Analisaramse os índices dos principais mercados de ações do mundo, sendo: Dow Jones, S&P 500, Nasdaq, Ibovespa, FTSE e Nikkei 225. Testou-se também a capacidade preditiva do modelo Riskmetrics desenvolvido pelo J.P. Morgan para o calculo do VaR, comparado com os modelos de volatilidade. Os resultados obtidos sugerem que o pacote desenvolvido pelo J.P.Morgan não se aplica adequadamente à realidade do mercado acionário mundial, como ferramenta de gestão e controle do risco das oscilações dos preços das ações de empresas negociadas nas bolsas de Nova Iorque, Nasdaq, BM&FBOVESPA, bolsa de Londres e bolsa de Tóquio. Os modelos que consideram o efeito de memória longa na volatilidade condicional dos retornos dos índices, em especial o modelo FIAPARCH (1,d,1), foram os que obtiveram melhor ajuste e desempenho preditivo do risco de mercado (Value-at-Risk), conforme valores apresentados pelo teste de razão de falha proposto por Kupiec (1995).In recent years, there have been many changes in how financial institutions assess risk. The regulations have had a very important role in the development of techniques for measuring risk. Considering the diversity of estimation techniques and risk analysis used by stock exchanges and futures, national and international, as well as clearing houses of risk control, this study proposed a comparative analysis of volatility models for calculating Value-at-Risk (VaR) to the major stock indexes of international finance. It used models of conditional volatility of the ARCH family taking into account the presence of long dependence on their returns (long memory) and asymmetry in volatility. Specifically, it used the models GARCH, EGARCH, APARCH, FIGARCH, FIEGARCH, FIAPARCH and HYGARCH estimated the birth of four different distributions, Normal, t-Student, GED and t-Student Asymmetric. It analyzed the contents of the major stock markets of the world, being: Dow Jones, S & P 500, NASDAQ, Bovespa index, FTSE and Nikkei 225. Was also tested the predictive ability of the RiskMetrics model developed by JP Morgan for the calculation of VaR, compared with the models of volatility. The results suggest that the package developed by JPMorgan does not apply adequately to the reality of global stock market as a tool to manage and control the risk of fluctuations in stock prices of companies traded on the New York Stock Exchange, Nasdaq, BM&FBOVESPA, London Stock Exchange and Tokyo Stock Exchange. Models that consider the effect of long memory in conditional volatility of returns of the indices, especially the model FIAPARCH (1, d, 1), were the ones showing better fit and predictive performance of market risk (Value-at-Risk) , according to figures provided by the ratio test proposed by Kupiec (1995).Biblioteca Digitais de Teses e Dissertações da USPPimenta Júnior, TabajaraGaio, Luiz Eduardo2009-12-16info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/96/96132/tde-03052010-173001/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:05Zoai:teses.usp.br:tde-03052010-173001Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-Risk
Risk management in international financial market: a comparative analyze between volatility models to Value-at-Risk estimation
title Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-Risk
spellingShingle Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-Risk
Gaio, Luiz Eduardo
ARCH models
Gestão de risco
Mercado de capitais
Modelos ARCH
Risk management
Stock market
Value-at-Risk
Value-at-Risk
title_short Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-Risk
title_full Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-Risk
title_fullStr Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-Risk
title_full_unstemmed Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-Risk
title_sort Gestão de riscos no mercado financeiro internacional: uma análise comparativa entre modelos de volatilidade para estimação do Value-at-Risk
author Gaio, Luiz Eduardo
author_facet Gaio, Luiz Eduardo
author_role author
dc.contributor.none.fl_str_mv Pimenta Júnior, Tabajara
dc.contributor.author.fl_str_mv Gaio, Luiz Eduardo
dc.subject.por.fl_str_mv ARCH models
Gestão de risco
Mercado de capitais
Modelos ARCH
Risk management
Stock market
Value-at-Risk
Value-at-Risk
topic ARCH models
Gestão de risco
Mercado de capitais
Modelos ARCH
Risk management
Stock market
Value-at-Risk
Value-at-Risk
description Durante os últimos anos, tem havido muitas mudanças na maneira como as instituições financeiras avaliam o risco. As regulações têm tido um papel muito importante no desenvolvimento das técnicas de medição do risco. Diante das diversidades de técnicas de estimação e análise de risco utilizadas pelas bolsas de valores e de futuros, nacionais e internacionais, bem como as Clearings de controle de risco, este estudo propôs uma análise comparativo de modelos de volatilidade para o cálculo do Value-at-Risk (VaR) aplicados aos principais índices de ações do mercado financeiro internacional. Utilizouse os modelos de volatilidade condicional da família ARCH levando em consideração a presença de longa dependência em seus retornos (memória longa) e assimetria na volatilidade. Em específico, utilizaram-se os modelos GARCH, EGARCH, APARCH, FIGARCH, FIEGARCH, FIAPARCH e HYGARCH estimados a parir de quatro diferentes distribuições, Normal, t-Student, G.E.D. e t-Student Assimétrica. Analisaramse os índices dos principais mercados de ações do mundo, sendo: Dow Jones, S&P 500, Nasdaq, Ibovespa, FTSE e Nikkei 225. Testou-se também a capacidade preditiva do modelo Riskmetrics desenvolvido pelo J.P. Morgan para o calculo do VaR, comparado com os modelos de volatilidade. Os resultados obtidos sugerem que o pacote desenvolvido pelo J.P.Morgan não se aplica adequadamente à realidade do mercado acionário mundial, como ferramenta de gestão e controle do risco das oscilações dos preços das ações de empresas negociadas nas bolsas de Nova Iorque, Nasdaq, BM&FBOVESPA, bolsa de Londres e bolsa de Tóquio. Os modelos que consideram o efeito de memória longa na volatilidade condicional dos retornos dos índices, em especial o modelo FIAPARCH (1,d,1), foram os que obtiveram melhor ajuste e desempenho preditivo do risco de mercado (Value-at-Risk), conforme valores apresentados pelo teste de razão de falha proposto por Kupiec (1995).
publishDate 2009
dc.date.none.fl_str_mv 2009-12-16
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/96/96132/tde-03052010-173001/
url http://www.teses.usp.br/teses/disponiveis/96/96132/tde-03052010-173001/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257831566213120