Detecção e Análise de Contornos em Imagens 2D.

Detalhes bibliográficos
Ano de defesa: 1998
Autor(a) principal: Bianchi, Andrea Gomes Campos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-23092008-110948/
Resumo: Neste trabalho apresentamos o desenvolvimento e a implementação de diversas técnicas de segmentação de imagens em termos de detecção de bordas, com um destaque especial para a segmentação não-linear. Os métodos considerados foram: o Gradiente, o Laplaciano da Gaussiana, a Regularização linear, e a segmentação não-linear usando o algoritmo Graduated Non Convexity, baseado na minimização de um funcional de energia associado à imagem. O tratamento matemático do funcional foi realizada segundo o paradigma do cálculo variacional. A sua principal vantagem é evidenciada durante o tratamento de bordas e descontinuidades, pois como a segmentação atua de forma não uniforme na imagem, apenas as regiões mais uniformes são suavizadas, preservando as descontinuidades, o que possibilita a conservação mais precisa dos contornos. Nos capítulos destinados a introdução das técnicas computacionais, apresentamos alguns exemplos das segmentações obtidas, possibilitando uma avaliação comparativa e qualitativa dos resultados. Aplicações em micrografias de cristais de KBr e de minerais serviram como um ensaio para a investigação da validação da segmentação através do algoritmo graduated Non Convexity.
id USP_1a83aacbc2e96c6824902cf857519259
oai_identifier_str oai:teses.usp.br:tde-23092008-110948
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Detecção e Análise de Contornos em Imagens 2D.Detection and analysis of contours on 2D images.Computer systemsSimulaçãoSimulationSistemas de computaçãoNeste trabalho apresentamos o desenvolvimento e a implementação de diversas técnicas de segmentação de imagens em termos de detecção de bordas, com um destaque especial para a segmentação não-linear. Os métodos considerados foram: o Gradiente, o Laplaciano da Gaussiana, a Regularização linear, e a segmentação não-linear usando o algoritmo Graduated Non Convexity, baseado na minimização de um funcional de energia associado à imagem. O tratamento matemático do funcional foi realizada segundo o paradigma do cálculo variacional. A sua principal vantagem é evidenciada durante o tratamento de bordas e descontinuidades, pois como a segmentação atua de forma não uniforme na imagem, apenas as regiões mais uniformes são suavizadas, preservando as descontinuidades, o que possibilita a conservação mais precisa dos contornos. Nos capítulos destinados a introdução das técnicas computacionais, apresentamos alguns exemplos das segmentações obtidas, possibilitando uma avaliação comparativa e qualitativa dos resultados. Aplicações em micrografias de cristais de KBr e de minerais serviram como um ensaio para a investigação da validação da segmentação através do algoritmo graduated Non Convexity.In this work we describe the development and implementation of several image segmentation techniques, with special attention focused on non linear segmentation. The considered edge detection methods are: Gradient, Laplacian of Gaussian, linear regularization, and the non-linear Graduate Non Convexity segmentation algorithm based on the minimization of the energy functional associated with the image contour. The mathematical treatment was done according to the variational calculus paradigm. The major advantage of such an approach is noted during the treatment of borders and discontinuities, since this method causes the segmentation to act non-uniformelly on the image, in such a way that just the homogeneus regions are smoothed, while preserving discontinuities and enabling more exact localization of the contours. Along the charpters dedicated to introducing the techniques, we present some examples of segmented images, enabling the qualitative and quantitative evaluation of the results. Applications to micrographies of KB4 crystals and minerals in soil provide a possibility to investigate and validate the Graduate Non Convexity segmentation methods.Biblioteca Digitais de Teses e Dissertações da USPCosta, Luciano da FontouraBianchi, Andrea Gomes Campos1998-10-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-23092008-110948/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:00Zoai:teses.usp.br:tde-23092008-110948Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Detecção e Análise de Contornos em Imagens 2D.
Detection and analysis of contours on 2D images.
title Detecção e Análise de Contornos em Imagens 2D.
spellingShingle Detecção e Análise de Contornos em Imagens 2D.
Bianchi, Andrea Gomes Campos
Computer systems
Simulação
Simulation
Sistemas de computação
title_short Detecção e Análise de Contornos em Imagens 2D.
title_full Detecção e Análise de Contornos em Imagens 2D.
title_fullStr Detecção e Análise de Contornos em Imagens 2D.
title_full_unstemmed Detecção e Análise de Contornos em Imagens 2D.
title_sort Detecção e Análise de Contornos em Imagens 2D.
author Bianchi, Andrea Gomes Campos
author_facet Bianchi, Andrea Gomes Campos
author_role author
dc.contributor.none.fl_str_mv Costa, Luciano da Fontoura
dc.contributor.author.fl_str_mv Bianchi, Andrea Gomes Campos
dc.subject.por.fl_str_mv Computer systems
Simulação
Simulation
Sistemas de computação
topic Computer systems
Simulação
Simulation
Sistemas de computação
description Neste trabalho apresentamos o desenvolvimento e a implementação de diversas técnicas de segmentação de imagens em termos de detecção de bordas, com um destaque especial para a segmentação não-linear. Os métodos considerados foram: o Gradiente, o Laplaciano da Gaussiana, a Regularização linear, e a segmentação não-linear usando o algoritmo Graduated Non Convexity, baseado na minimização de um funcional de energia associado à imagem. O tratamento matemático do funcional foi realizada segundo o paradigma do cálculo variacional. A sua principal vantagem é evidenciada durante o tratamento de bordas e descontinuidades, pois como a segmentação atua de forma não uniforme na imagem, apenas as regiões mais uniformes são suavizadas, preservando as descontinuidades, o que possibilita a conservação mais precisa dos contornos. Nos capítulos destinados a introdução das técnicas computacionais, apresentamos alguns exemplos das segmentações obtidas, possibilitando uma avaliação comparativa e qualitativa dos resultados. Aplicações em micrografias de cristais de KBr e de minerais serviram como um ensaio para a investigação da validação da segmentação através do algoritmo graduated Non Convexity.
publishDate 1998
dc.date.none.fl_str_mv 1998-10-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-23092008-110948/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-23092008-110948/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258475155947520