Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.
| Ano de defesa: | 2008 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/3/3143/tde-01102008-123720/ |
Resumo: | Nesta tese são apresentadas metodologias alternativas ao enfoque determinístico de avaliação de desempenho elétrico de sistemas de distribuição, especificamente na análise dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando para isto, métodos probabilísticos e teoria de conjuntos fuzzy. A Agência Nacional de Energia Elétrica estabeleceu a resolução nº 505/2001 que especifica indicadores de variação de tensão de longa duração, contendo os indicadores individuais e coletivos a serem mensurados, assim como, as penalidades pelo não cumprimento dos prazos limites estabelecidos para regularização. A ENERSUL, Empresa Distribuidora do Grupo ENBR Energias do Brasil e o ENERQ Centro de Estudos em Regulação e Qualidade de Energia Elétrica desenvolveram um projeto de P&D para a obtenção de metodologia e software de simulação dos indicadores de variação de tensão de longa duração. No projeto de P&D foi especificado e desenvolvido um módulo computacional para calcular o fluxo de carga com uma abordagem probabilística, partindo-se das curvas de carga típicas de consumidores, que representam a variação temporal da carga (demanda máxima e desvio padrão), obtendo-se as curvas de distribuição de probabilidades da tensão, que permitiram calcular, para cada ponto da rede, os riscos de transgressão dos indicadores de variação de tensão de longa duração. Após o projeto de P&D, uma nova abordagem que utiliza a teoria de conjuntos difusos (fuzzy) foi desenvolvida e foi possível a comparação com o método probabilístico. Baseado em números fuzzy que representam a estimativa de níveis tensão para cada ponto na rede, e com métodos específicos de classificação fuzzy, calculam-se os indicadores de DRP e DRC. |
| id |
USP_1eaaab752244c0570644bb59e36ee49d |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-01102008-123720 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.Risk assessment of voltage levels violations in distribution systems using probabilistic approach and fuzzy sets.Distribuição de energia elétricaElectric power distributionFuzzy (artificial intelligence)Fuzzy (inteligência artificial)ProbabilidadeProbabilityNesta tese são apresentadas metodologias alternativas ao enfoque determinístico de avaliação de desempenho elétrico de sistemas de distribuição, especificamente na análise dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando para isto, métodos probabilísticos e teoria de conjuntos fuzzy. A Agência Nacional de Energia Elétrica estabeleceu a resolução nº 505/2001 que especifica indicadores de variação de tensão de longa duração, contendo os indicadores individuais e coletivos a serem mensurados, assim como, as penalidades pelo não cumprimento dos prazos limites estabelecidos para regularização. A ENERSUL, Empresa Distribuidora do Grupo ENBR Energias do Brasil e o ENERQ Centro de Estudos em Regulação e Qualidade de Energia Elétrica desenvolveram um projeto de P&D para a obtenção de metodologia e software de simulação dos indicadores de variação de tensão de longa duração. No projeto de P&D foi especificado e desenvolvido um módulo computacional para calcular o fluxo de carga com uma abordagem probabilística, partindo-se das curvas de carga típicas de consumidores, que representam a variação temporal da carga (demanda máxima e desvio padrão), obtendo-se as curvas de distribuição de probabilidades da tensão, que permitiram calcular, para cada ponto da rede, os riscos de transgressão dos indicadores de variação de tensão de longa duração. Após o projeto de P&D, uma nova abordagem que utiliza a teoria de conjuntos difusos (fuzzy) foi desenvolvida e foi possível a comparação com o método probabilístico. Baseado em números fuzzy que representam a estimativa de níveis tensão para cada ponto na rede, e com métodos específicos de classificação fuzzy, calculam-se os indicadores de DRP e DRC.In this thesis are presented alternatives methodologies for deterministic approach for evaluation of performance of electrical distribution systems, specifically in the risk assessment of voltage levels violations in distribution systems, using for this, probabilistic methods and theory of fuzzy sets. ANEELs Resolution 505/2001 specifies long-term voltage variation indicators, with the following items to be measured: individual and collective indicators, and the penalties for not complying with the established limits. ENERSUL, the distribution company of the ENBR Group Energias do Brasil and ENERQ Center for Regulation and Power Quality Studies carryied out an R&D project for the development of a methodology and simulation software that will enable the company to evaluate long-term voltage variation indicators. A computational module was specified and developed to calculate the load flow with a probabilistic approach. Based on typical daily load curves, representing the time variation of the load (average and standard deviation curves), distribution curves are obtained for voltage probability, so that the risk of violating indicators can be calculated, for each point in the network. After the R&D project, a new approach based on fuzzy sets theory was developed and make possible the comparison with the probabilistic approach. Based on fuzzy numbers that represents an estimative for voltage levels for each point in the network, and with specific fuzzy classification methods, the RDI and RDC indicators can be calculated.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Carlos César Barioni deGuimarães, Renato Oliveira2008-06-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3143/tde-01102008-123720/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:56Zoai:teses.usp.br:tde-01102008-123720Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy. Risk assessment of voltage levels violations in distribution systems using probabilistic approach and fuzzy sets. |
| title |
Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy. |
| spellingShingle |
Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy. Guimarães, Renato Oliveira Distribuição de energia elétrica Electric power distribution Fuzzy (artificial intelligence) Fuzzy (inteligência artificial) Probabilidade Probability |
| title_short |
Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy. |
| title_full |
Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy. |
| title_fullStr |
Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy. |
| title_full_unstemmed |
Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy. |
| title_sort |
Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy. |
| author |
Guimarães, Renato Oliveira |
| author_facet |
Guimarães, Renato Oliveira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Oliveira, Carlos César Barioni de |
| dc.contributor.author.fl_str_mv |
Guimarães, Renato Oliveira |
| dc.subject.por.fl_str_mv |
Distribuição de energia elétrica Electric power distribution Fuzzy (artificial intelligence) Fuzzy (inteligência artificial) Probabilidade Probability |
| topic |
Distribuição de energia elétrica Electric power distribution Fuzzy (artificial intelligence) Fuzzy (inteligência artificial) Probabilidade Probability |
| description |
Nesta tese são apresentadas metodologias alternativas ao enfoque determinístico de avaliação de desempenho elétrico de sistemas de distribuição, especificamente na análise dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando para isto, métodos probabilísticos e teoria de conjuntos fuzzy. A Agência Nacional de Energia Elétrica estabeleceu a resolução nº 505/2001 que especifica indicadores de variação de tensão de longa duração, contendo os indicadores individuais e coletivos a serem mensurados, assim como, as penalidades pelo não cumprimento dos prazos limites estabelecidos para regularização. A ENERSUL, Empresa Distribuidora do Grupo ENBR Energias do Brasil e o ENERQ Centro de Estudos em Regulação e Qualidade de Energia Elétrica desenvolveram um projeto de P&D para a obtenção de metodologia e software de simulação dos indicadores de variação de tensão de longa duração. No projeto de P&D foi especificado e desenvolvido um módulo computacional para calcular o fluxo de carga com uma abordagem probabilística, partindo-se das curvas de carga típicas de consumidores, que representam a variação temporal da carga (demanda máxima e desvio padrão), obtendo-se as curvas de distribuição de probabilidades da tensão, que permitiram calcular, para cada ponto da rede, os riscos de transgressão dos indicadores de variação de tensão de longa duração. Após o projeto de P&D, uma nova abordagem que utiliza a teoria de conjuntos difusos (fuzzy) foi desenvolvida e foi possível a comparação com o método probabilístico. Baseado em números fuzzy que representam a estimativa de níveis tensão para cada ponto na rede, e com métodos específicos de classificação fuzzy, calculam-se os indicadores de DRP e DRC. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-06-09 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-01102008-123720/ |
| url |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-01102008-123720/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257793608810496 |