Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Guimarães, Renato Oliveira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3143/tde-01102008-123720/
Resumo: Nesta tese são apresentadas metodologias alternativas ao enfoque determinístico de avaliação de desempenho elétrico de sistemas de distribuição, especificamente na análise dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando para isto, métodos probabilísticos e teoria de conjuntos fuzzy. A Agência Nacional de Energia Elétrica estabeleceu a resolução nº 505/2001 que especifica indicadores de variação de tensão de longa duração, contendo os indicadores individuais e coletivos a serem mensurados, assim como, as penalidades pelo não cumprimento dos prazos limites estabelecidos para regularização. A ENERSUL, Empresa Distribuidora do Grupo ENBR Energias do Brasil e o ENERQ Centro de Estudos em Regulação e Qualidade de Energia Elétrica desenvolveram um projeto de P&D para a obtenção de metodologia e software de simulação dos indicadores de variação de tensão de longa duração. No projeto de P&D foi especificado e desenvolvido um módulo computacional para calcular o fluxo de carga com uma abordagem probabilística, partindo-se das curvas de carga típicas de consumidores, que representam a variação temporal da carga (demanda máxima e desvio padrão), obtendo-se as curvas de distribuição de probabilidades da tensão, que permitiram calcular, para cada ponto da rede, os riscos de transgressão dos indicadores de variação de tensão de longa duração. Após o projeto de P&D, uma nova abordagem que utiliza a teoria de conjuntos difusos (fuzzy) foi desenvolvida e foi possível a comparação com o método probabilístico. Baseado em números fuzzy que representam a estimativa de níveis tensão para cada ponto na rede, e com métodos específicos de classificação fuzzy, calculam-se os indicadores de DRP e DRC.
id USP_1eaaab752244c0570644bb59e36ee49d
oai_identifier_str oai:teses.usp.br:tde-01102008-123720
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.Risk assessment of voltage levels violations in distribution systems using probabilistic approach and fuzzy sets.Distribuição de energia elétricaElectric power distributionFuzzy (artificial intelligence)Fuzzy (inteligência artificial)ProbabilidadeProbabilityNesta tese são apresentadas metodologias alternativas ao enfoque determinístico de avaliação de desempenho elétrico de sistemas de distribuição, especificamente na análise dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando para isto, métodos probabilísticos e teoria de conjuntos fuzzy. A Agência Nacional de Energia Elétrica estabeleceu a resolução nº 505/2001 que especifica indicadores de variação de tensão de longa duração, contendo os indicadores individuais e coletivos a serem mensurados, assim como, as penalidades pelo não cumprimento dos prazos limites estabelecidos para regularização. A ENERSUL, Empresa Distribuidora do Grupo ENBR Energias do Brasil e o ENERQ Centro de Estudos em Regulação e Qualidade de Energia Elétrica desenvolveram um projeto de P&D para a obtenção de metodologia e software de simulação dos indicadores de variação de tensão de longa duração. No projeto de P&D foi especificado e desenvolvido um módulo computacional para calcular o fluxo de carga com uma abordagem probabilística, partindo-se das curvas de carga típicas de consumidores, que representam a variação temporal da carga (demanda máxima e desvio padrão), obtendo-se as curvas de distribuição de probabilidades da tensão, que permitiram calcular, para cada ponto da rede, os riscos de transgressão dos indicadores de variação de tensão de longa duração. Após o projeto de P&D, uma nova abordagem que utiliza a teoria de conjuntos difusos (fuzzy) foi desenvolvida e foi possível a comparação com o método probabilístico. Baseado em números fuzzy que representam a estimativa de níveis tensão para cada ponto na rede, e com métodos específicos de classificação fuzzy, calculam-se os indicadores de DRP e DRC.In this thesis are presented alternatives methodologies for deterministic approach for evaluation of performance of electrical distribution systems, specifically in the risk assessment of voltage levels violations in distribution systems, using for this, probabilistic methods and theory of fuzzy sets. ANEELs Resolution 505/2001 specifies long-term voltage variation indicators, with the following items to be measured: individual and collective indicators, and the penalties for not complying with the established limits. ENERSUL, the distribution company of the ENBR Group Energias do Brasil and ENERQ Center for Regulation and Power Quality Studies carryied out an R&D project for the development of a methodology and simulation software that will enable the company to evaluate long-term voltage variation indicators. A computational module was specified and developed to calculate the load flow with a probabilistic approach. Based on typical daily load curves, representing the time variation of the load (average and standard deviation curves), distribution curves are obtained for voltage probability, so that the risk of violating indicators can be calculated, for each point in the network. After the R&D project, a new approach based on fuzzy sets theory was developed and make possible the comparison with the probabilistic approach. Based on fuzzy numbers that represents an estimative for voltage levels for each point in the network, and with specific fuzzy classification methods, the RDI and RDC indicators can be calculated.Biblioteca Digitais de Teses e Dissertações da USPOliveira, Carlos César Barioni deGuimarães, Renato Oliveira2008-06-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3143/tde-01102008-123720/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:09:56Zoai:teses.usp.br:tde-01102008-123720Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:09:56Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.
Risk assessment of voltage levels violations in distribution systems using probabilistic approach and fuzzy sets.
title Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.
spellingShingle Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.
Guimarães, Renato Oliveira
Distribuição de energia elétrica
Electric power distribution
Fuzzy (artificial intelligence)
Fuzzy (inteligência artificial)
Probabilidade
Probability
title_short Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.
title_full Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.
title_fullStr Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.
title_full_unstemmed Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.
title_sort Avaliação dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando método probabilístico e conjuntos fuzzy.
author Guimarães, Renato Oliveira
author_facet Guimarães, Renato Oliveira
author_role author
dc.contributor.none.fl_str_mv Oliveira, Carlos César Barioni de
dc.contributor.author.fl_str_mv Guimarães, Renato Oliveira
dc.subject.por.fl_str_mv Distribuição de energia elétrica
Electric power distribution
Fuzzy (artificial intelligence)
Fuzzy (inteligência artificial)
Probabilidade
Probability
topic Distribuição de energia elétrica
Electric power distribution
Fuzzy (artificial intelligence)
Fuzzy (inteligência artificial)
Probabilidade
Probability
description Nesta tese são apresentadas metodologias alternativas ao enfoque determinístico de avaliação de desempenho elétrico de sistemas de distribuição, especificamente na análise dos riscos de violações de conformidade de tensão em sistemas de distribuição, utilizando para isto, métodos probabilísticos e teoria de conjuntos fuzzy. A Agência Nacional de Energia Elétrica estabeleceu a resolução nº 505/2001 que especifica indicadores de variação de tensão de longa duração, contendo os indicadores individuais e coletivos a serem mensurados, assim como, as penalidades pelo não cumprimento dos prazos limites estabelecidos para regularização. A ENERSUL, Empresa Distribuidora do Grupo ENBR Energias do Brasil e o ENERQ Centro de Estudos em Regulação e Qualidade de Energia Elétrica desenvolveram um projeto de P&D para a obtenção de metodologia e software de simulação dos indicadores de variação de tensão de longa duração. No projeto de P&D foi especificado e desenvolvido um módulo computacional para calcular o fluxo de carga com uma abordagem probabilística, partindo-se das curvas de carga típicas de consumidores, que representam a variação temporal da carga (demanda máxima e desvio padrão), obtendo-se as curvas de distribuição de probabilidades da tensão, que permitiram calcular, para cada ponto da rede, os riscos de transgressão dos indicadores de variação de tensão de longa duração. Após o projeto de P&D, uma nova abordagem que utiliza a teoria de conjuntos difusos (fuzzy) foi desenvolvida e foi possível a comparação com o método probabilístico. Baseado em números fuzzy que representam a estimativa de níveis tensão para cada ponto na rede, e com métodos específicos de classificação fuzzy, calculam-se os indicadores de DRP e DRC.
publishDate 2008
dc.date.none.fl_str_mv 2008-06-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3143/tde-01102008-123720/
url http://www.teses.usp.br/teses/disponiveis/3/3143/tde-01102008-123720/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257793608810496