Exportação concluída — 

Machine learning model for asphalt pavements performance prediction.

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Aranha, Ana Luisa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3138/tde-04042023-075119/
Resumo: The accurate forecast of pavement performance is crucial for Pavement Management Systems, as they guide maintenance decisions and budget allocation. With improvements in data collection, storage and processing, machine learning (ML) is gaining visibility as a behavior prediction method in the field of engineering. Several studies evaluated these algorithms potential to predict pavement serviceability, however some challenges limit its use. The pavement performance history, structural information, and traffic load characteristics are not always available on data-oriented manner. The training dataset preprocessing has great impact on the models predictive performance, is highly dependent on the modeler experience, and are not typically reported on the engineering related literature. Also, the long-term prediction using ML algorithms usually demand long historical time-series, which are not always available on a large scale. Therefore, the objective of this dissertation is to develop a methodology for the use of machine learning algorithms on the Asphalt Pavement Performance Prediction, comprehending: data collection and organization; training dataset definition; algorithm selection and configuration; and long-term performance model definition. The pavements performance was based on the Surface Maximum Deflection (D0) and International Roughness Index (IRI). To achieve this goal, the three most used ML algorithms - Support Vector Machine (SVM); Random Forest (RF); and Artificial Neural Network (ANN) - in D0 and IRI short-term prediction were tested using 10 training datasets, composed of the data collected from 21,568 traffic lane kilometers. The long-term prediction model was based: on the short-term ML model; the Markov chain principle; and the recursive method. The results indicated that ANN is the most accurate technique with a RMSE of 16x10-3mm on the D0 prediction; and a RMSE of 0.19m/km on IRI prediction. The models evaluation of the long-term prediction was obtained by the comparison of 20 pavement segments field data with simulated data. The best results were also obtained with ANN: they presented an average RMSE of 23x10-3mm on the D0 prediction; and a RMSE of 0.17m/km on IRI prediction. RF was also identified as an effective technique, generating similar results with less data preprocessing.
id USP_23ef6e1cbe831078d58c6d7459a77fd8
oai_identifier_str oai:teses.usp.br:tde-04042023-075119
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Machine learning model for asphalt pavements performance prediction.Modelo de aprendizado de máquina para previsão de desempenho de pavimentos asfálticos.Aprendizado computacionalAsphalt pavement managementGerência de pavimentos asfálticosMachine learning.Performance predictionPrevisão de desempenhoThe accurate forecast of pavement performance is crucial for Pavement Management Systems, as they guide maintenance decisions and budget allocation. With improvements in data collection, storage and processing, machine learning (ML) is gaining visibility as a behavior prediction method in the field of engineering. Several studies evaluated these algorithms potential to predict pavement serviceability, however some challenges limit its use. The pavement performance history, structural information, and traffic load characteristics are not always available on data-oriented manner. The training dataset preprocessing has great impact on the models predictive performance, is highly dependent on the modeler experience, and are not typically reported on the engineering related literature. Also, the long-term prediction using ML algorithms usually demand long historical time-series, which are not always available on a large scale. Therefore, the objective of this dissertation is to develop a methodology for the use of machine learning algorithms on the Asphalt Pavement Performance Prediction, comprehending: data collection and organization; training dataset definition; algorithm selection and configuration; and long-term performance model definition. The pavements performance was based on the Surface Maximum Deflection (D0) and International Roughness Index (IRI). To achieve this goal, the three most used ML algorithms - Support Vector Machine (SVM); Random Forest (RF); and Artificial Neural Network (ANN) - in D0 and IRI short-term prediction were tested using 10 training datasets, composed of the data collected from 21,568 traffic lane kilometers. The long-term prediction model was based: on the short-term ML model; the Markov chain principle; and the recursive method. The results indicated that ANN is the most accurate technique with a RMSE of 16x10-3mm on the D0 prediction; and a RMSE of 0.19m/km on IRI prediction. The models evaluation of the long-term prediction was obtained by the comparison of 20 pavement segments field data with simulated data. The best results were also obtained with ANN: they presented an average RMSE of 23x10-3mm on the D0 prediction; and a RMSE of 0.17m/km on IRI prediction. RF was also identified as an effective technique, generating similar results with less data preprocessing.A previsão precisa do desempenho do pavimento é crucial para os Sistemas de Gestão de Pavimentos, pois orienta as decisões de manutenção e alocação de recursos. Com melhorias na coleta, armazenamento e processamento de dados, o aprendizado de máquina (do inglês ML) está ganhando visibilidade como método de previsão de comportamento no campo da engenharia. Vários estudos avaliaram o potencial desses algoritmos para prever serventia do pavimento, porém alguns desafios limitam seu uso. O histórico do desempenho do pavimento, informações estruturais e características de tráfego nem sempre estão disponíveis em forma de dados organizados e identificados. O pré-processamento dos dados de treinamento tem grande impacto no desempenho do modelo, é altamente dependente da experiência do modelador e normalmente não é relatado na literatura relacionada à engenharia. Além disso, a previsão de longo prazo usando algoritmos de ML geralmente exige longas séries históricas, que nem sempre estão disponíveis em larga escala. Portanto, o objetivo desta tese é desenvolver uma metodologia para o uso de algoritmos de aprendizado de máquina na Previsão de Desempenho de Pavimentos Asfálticos, compreendendo: coleta e organização de dados; definição do conjunto de dados de treinamento; seleção e configuração de algoritmos; e definição de modelo de desempenho de longo prazo. O desempenho do pavimento foi baseado na Deflexão Máxima da Superfície (D0) e no International Roughness Index (IRI). Para atingir este objetivo, os três algoritmos de ML mais utilizados na previsão de curto prazo do D0 e IRI: Support Vector Machine (SVM); Floresta Aleatória (RF); e Rede Neural Artificial (RNA), foram testados em 10 bases de dados de treinamento, compostas pelos dados coletados de 21.568 quilômetros de faixas de tráfego. O modelo de previsão de longo prazo foi baseado: no modelo de ML de curto prazo; no princípio da cadeia de Markov; e no método recursivo. Os resultados indicaram que a RNA é a técnica mais precisa com um RMSE de 16x10-3mm na previsão de D0; e um RMSE de 0,19m/km na previsão IRI. A avaliação dos modelos da previsão de longo prazo foi obtida pela comparação de dados de campo de 20 segmentos de pavimento com dados simulados. Os melhores resultados também foram obtidos com RNA: apresentaram RMSE médio de 23x10-3mm na predição D0; e um RMSE de 0,17m/km na previsão IRI. A RF também foi identificada como uma técnica eficaz, gerando resultados semelhantes, com menor pré-processamento de dados.Biblioteca Digitais de Teses e Dissertações da USPBernucci, Liedi Légi BarianiAranha, Ana Luisa2022-12-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3138/tde-04042023-075119/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-04-04T12:12:24Zoai:teses.usp.br:tde-04042023-075119Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-04-04T12:12:24Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Machine learning model for asphalt pavements performance prediction.
Modelo de aprendizado de máquina para previsão de desempenho de pavimentos asfálticos.
title Machine learning model for asphalt pavements performance prediction.
spellingShingle Machine learning model for asphalt pavements performance prediction.
Aranha, Ana Luisa
Aprendizado computacional
Asphalt pavement management
Gerência de pavimentos asfálticos
Machine learning.
Performance prediction
Previsão de desempenho
title_short Machine learning model for asphalt pavements performance prediction.
title_full Machine learning model for asphalt pavements performance prediction.
title_fullStr Machine learning model for asphalt pavements performance prediction.
title_full_unstemmed Machine learning model for asphalt pavements performance prediction.
title_sort Machine learning model for asphalt pavements performance prediction.
author Aranha, Ana Luisa
author_facet Aranha, Ana Luisa
author_role author
dc.contributor.none.fl_str_mv Bernucci, Liedi Légi Bariani
dc.contributor.author.fl_str_mv Aranha, Ana Luisa
dc.subject.por.fl_str_mv Aprendizado computacional
Asphalt pavement management
Gerência de pavimentos asfálticos
Machine learning.
Performance prediction
Previsão de desempenho
topic Aprendizado computacional
Asphalt pavement management
Gerência de pavimentos asfálticos
Machine learning.
Performance prediction
Previsão de desempenho
description The accurate forecast of pavement performance is crucial for Pavement Management Systems, as they guide maintenance decisions and budget allocation. With improvements in data collection, storage and processing, machine learning (ML) is gaining visibility as a behavior prediction method in the field of engineering. Several studies evaluated these algorithms potential to predict pavement serviceability, however some challenges limit its use. The pavement performance history, structural information, and traffic load characteristics are not always available on data-oriented manner. The training dataset preprocessing has great impact on the models predictive performance, is highly dependent on the modeler experience, and are not typically reported on the engineering related literature. Also, the long-term prediction using ML algorithms usually demand long historical time-series, which are not always available on a large scale. Therefore, the objective of this dissertation is to develop a methodology for the use of machine learning algorithms on the Asphalt Pavement Performance Prediction, comprehending: data collection and organization; training dataset definition; algorithm selection and configuration; and long-term performance model definition. The pavements performance was based on the Surface Maximum Deflection (D0) and International Roughness Index (IRI). To achieve this goal, the three most used ML algorithms - Support Vector Machine (SVM); Random Forest (RF); and Artificial Neural Network (ANN) - in D0 and IRI short-term prediction were tested using 10 training datasets, composed of the data collected from 21,568 traffic lane kilometers. The long-term prediction model was based: on the short-term ML model; the Markov chain principle; and the recursive method. The results indicated that ANN is the most accurate technique with a RMSE of 16x10-3mm on the D0 prediction; and a RMSE of 0.19m/km on IRI prediction. The models evaluation of the long-term prediction was obtained by the comparison of 20 pavement segments field data with simulated data. The best results were also obtained with ANN: they presented an average RMSE of 23x10-3mm on the D0 prediction; and a RMSE of 0.17m/km on IRI prediction. RF was also identified as an effective technique, generating similar results with less data preprocessing.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3138/tde-04042023-075119/
url https://www.teses.usp.br/teses/disponiveis/3/3138/tde-04042023-075119/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257849012420608