Prêmios realizados e esperados no Brasil

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: França, Michael Tulio Ramos de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/12/12138/tde-19012016-151431/
Resumo: Dado que o investimento no mercado acionário envolve incerteza, devíamos esperar que seu retorno médio fosse relativamente superior a uma aplicação livre de risco para compensar o investidor pelo risco adicional que ele incorre quando aplica seus recursos em ações. Entretanto, não encontramos tal evidência quando analisamos o comportamento do mercado acionário brasileiro. Isto porque, considerando os retornos realizados médio dos últimos vinte anos, o prêmio histórico foi relativamente baixo. Assim, naturalmente surge à questão se tal estimativa corresponde a um valor razoável para inferirmos o futuro comportamento do mercado acionário. Para responder a esta questão, nossa metodologia constituiu em três etapas. Na primeira, revisamos a literatura em busca de técnicas de estimação do prêmio e selecionamos as abordagens baseado em artigos recentes, citações e disponibilidade de dados. Além disso, também realizamos algumas propostas de estimação. Em seguida, apresentamos os resultados das metodologias selecionadas para os anos recentes e observamos que as estimativas apresentaram certo grau de heterogeneidade. Na segunda etapa, testamos o desempenho dos modelos empíricos estimados usando testes de previsão fora da amostra. Os resultados apontaram que alguns modelos foram superiores ao prêmio histórico. Desta forma, encontramos evidências de que o prêmio histórico representa apenas mais uma fonte de informação para inferir o prêmio esperado e, se tomado sozinho, não constitui um procedimento de inferência razoável. Visto que cada modelo apresenta uma estratégia empírica para inferir o prêmio, todos deveriam representar uma fonte informacional sobre o prêmio futuro. Consequentemente, uma corrente da literatura recente destaca que a estratégia ótima pode ser agregar informações dos modelos individuais. Com este intuito, o último passo da metodologia foi combinar informações dos modelos que apresentaram melhor desempenho em relação ao prêmio histórico e verificar se tal procedimento aumentou a performance do poder preditivo dos modelos. Como resultado, verificamos que tal abordagem melhora e estabiliza a previsão do prêmio.
id USP_26801db0e90b475af081ea6725fdd357
oai_identifier_str oai:teses.usp.br:tde-19012016-151431
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Prêmios realizados e esperados no BrasilRealized and expected premium in BrazilExpected returnFinançasFinanceInferenceInferênciaRetorno esperadoRiscoRiskDado que o investimento no mercado acionário envolve incerteza, devíamos esperar que seu retorno médio fosse relativamente superior a uma aplicação livre de risco para compensar o investidor pelo risco adicional que ele incorre quando aplica seus recursos em ações. Entretanto, não encontramos tal evidência quando analisamos o comportamento do mercado acionário brasileiro. Isto porque, considerando os retornos realizados médio dos últimos vinte anos, o prêmio histórico foi relativamente baixo. Assim, naturalmente surge à questão se tal estimativa corresponde a um valor razoável para inferirmos o futuro comportamento do mercado acionário. Para responder a esta questão, nossa metodologia constituiu em três etapas. Na primeira, revisamos a literatura em busca de técnicas de estimação do prêmio e selecionamos as abordagens baseado em artigos recentes, citações e disponibilidade de dados. Além disso, também realizamos algumas propostas de estimação. Em seguida, apresentamos os resultados das metodologias selecionadas para os anos recentes e observamos que as estimativas apresentaram certo grau de heterogeneidade. Na segunda etapa, testamos o desempenho dos modelos empíricos estimados usando testes de previsão fora da amostra. Os resultados apontaram que alguns modelos foram superiores ao prêmio histórico. Desta forma, encontramos evidências de que o prêmio histórico representa apenas mais uma fonte de informação para inferir o prêmio esperado e, se tomado sozinho, não constitui um procedimento de inferência razoável. Visto que cada modelo apresenta uma estratégia empírica para inferir o prêmio, todos deveriam representar uma fonte informacional sobre o prêmio futuro. Consequentemente, uma corrente da literatura recente destaca que a estratégia ótima pode ser agregar informações dos modelos individuais. Com este intuito, o último passo da metodologia foi combinar informações dos modelos que apresentaram melhor desempenho em relação ao prêmio histórico e verificar se tal procedimento aumentou a performance do poder preditivo dos modelos. Como resultado, verificamos que tal abordagem melhora e estabiliza a previsão do prêmio.Given that investment in the stock market involves uncertainty, we should expect that the average return was relatively higher than a risk-free investment in order to compensate investors for the additional risk they incur. However, we find no such evidence when we analyze the Brazilian stock market behavior. This is because, considering the realized average returns of the past twenty years, the historic equity risk premium was relatively low. So, naturally, the question of whether such an estimate corresponds to a reasonable value to infer the future behavior of the stock market arises. To answer this question, our methodology consists of three stages. At first, we review the literature on risk premium estimation techniques and select the different approaches based on recent articles, quotes and availability of data. We also made some estimation proposals. We then proceed and present the results of the methodologies selected for the recent years and find that the estimates presented some degree of heterogeneity. On the second step, we test the performance of our estimates using out-of-sample predictive tests. The results showed that some models performed better than the historical premium. Thus, we find evidence that the historical premium is just another source of information to infer the expected award and, if taken alone, does not constitute a reasonable inference procedure. Since each model presents an empirical strategy to infer the premium, every one of them should represent an information source on the future premium. Consequently, a recent literature points out that the current optimal strategy may be to aggregate information from individual models. To this end, the last step of the methodology was to combine information of the models that performed better against the historical premium and verify that this procedure increased the power of the predictive performance of the models. As a result, we find that this approach improves and stabilizes the premium forecast.Biblioteca Digitais de Teses e Dissertações da USPYoshino, Joe AkiraFrança, Michael Tulio Ramos de2015-11-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/12/12138/tde-19012016-151431/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-19012016-151431Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Prêmios realizados e esperados no Brasil
Realized and expected premium in Brazil
title Prêmios realizados e esperados no Brasil
spellingShingle Prêmios realizados e esperados no Brasil
França, Michael Tulio Ramos de
Expected return
Finanças
Finance
Inference
Inferência
Retorno esperado
Risco
Risk
title_short Prêmios realizados e esperados no Brasil
title_full Prêmios realizados e esperados no Brasil
title_fullStr Prêmios realizados e esperados no Brasil
title_full_unstemmed Prêmios realizados e esperados no Brasil
title_sort Prêmios realizados e esperados no Brasil
author França, Michael Tulio Ramos de
author_facet França, Michael Tulio Ramos de
author_role author
dc.contributor.none.fl_str_mv Yoshino, Joe Akira
dc.contributor.author.fl_str_mv França, Michael Tulio Ramos de
dc.subject.por.fl_str_mv Expected return
Finanças
Finance
Inference
Inferência
Retorno esperado
Risco
Risk
topic Expected return
Finanças
Finance
Inference
Inferência
Retorno esperado
Risco
Risk
description Dado que o investimento no mercado acionário envolve incerteza, devíamos esperar que seu retorno médio fosse relativamente superior a uma aplicação livre de risco para compensar o investidor pelo risco adicional que ele incorre quando aplica seus recursos em ações. Entretanto, não encontramos tal evidência quando analisamos o comportamento do mercado acionário brasileiro. Isto porque, considerando os retornos realizados médio dos últimos vinte anos, o prêmio histórico foi relativamente baixo. Assim, naturalmente surge à questão se tal estimativa corresponde a um valor razoável para inferirmos o futuro comportamento do mercado acionário. Para responder a esta questão, nossa metodologia constituiu em três etapas. Na primeira, revisamos a literatura em busca de técnicas de estimação do prêmio e selecionamos as abordagens baseado em artigos recentes, citações e disponibilidade de dados. Além disso, também realizamos algumas propostas de estimação. Em seguida, apresentamos os resultados das metodologias selecionadas para os anos recentes e observamos que as estimativas apresentaram certo grau de heterogeneidade. Na segunda etapa, testamos o desempenho dos modelos empíricos estimados usando testes de previsão fora da amostra. Os resultados apontaram que alguns modelos foram superiores ao prêmio histórico. Desta forma, encontramos evidências de que o prêmio histórico representa apenas mais uma fonte de informação para inferir o prêmio esperado e, se tomado sozinho, não constitui um procedimento de inferência razoável. Visto que cada modelo apresenta uma estratégia empírica para inferir o prêmio, todos deveriam representar uma fonte informacional sobre o prêmio futuro. Consequentemente, uma corrente da literatura recente destaca que a estratégia ótima pode ser agregar informações dos modelos individuais. Com este intuito, o último passo da metodologia foi combinar informações dos modelos que apresentaram melhor desempenho em relação ao prêmio histórico e verificar se tal procedimento aumentou a performance do poder preditivo dos modelos. Como resultado, verificamos que tal abordagem melhora e estabiliza a previsão do prêmio.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/12/12138/tde-19012016-151431/
url http://www.teses.usp.br/teses/disponiveis/12/12138/tde-19012016-151431/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258260022755328