Aritmética modular e aplicações: criptografia RSA e calendário perpétuo
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55136/tde-22012021-113841/ |
Resumo: | Tópicos em Aritmética Modular são raramente trabalhados no Ensino Básico e poucos professores possuem formação adequada sobre o assunto. Nessa dissertação buscou-se retratar premissas conceituais que colaborem com a formação do professor e sua prática, em alguns tópicos sobre Aritmética Modular. Propôs-se a tratar previamente conceitos iniciais em torno da ideia de divisibilidade e, sequencialmente, introduzir o conceito de congruência de maneira natural. Procurou-se proporcionar o aprofundamento no tema e clareza no entendimento teórico, fundamentando a apresentação dos resultados e teoremas relacionados, através de aplicações e realizações de exemplos diversos e não triviais. Dessa forma mostrou-se resultados relevantes do estudo das congruências como o Teorema de Fermat, Teorema de Euler e classes de equivalência. De modo a ilustrar algumas aplicações dos resultados tratados, apresenta-se o sistema de Criptografia RSA e o Calendário Perpétuo. Como conclusão, expôs-se uma proposta de sequência didática para os anos finais do Ensino Fundamental, evidenciando alguns conceitos e resultados da Aritmética Modular presentes no currículo de Matemática dessa etapa de ensino, segundo a Base Nacional Comum Curricular. Para embasar a sequência didática, utilizou-se da análise das grandezas e construções aritméticas e algébricas possíveis no calendário atual, adotando como norteador as conclusões realizadas acerca do Calendário Perpétuo e, consequentemente, sobre o Teorema de Zeller. |
| id |
USP_308f1f3988791c3d43043658ec9b0064 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-22012021-113841 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Aritmética modular e aplicações: criptografia RSA e calendário perpétuoModular arithmetic and applications: RSA cryptography and perpetual calendarAritmética modularCalendário perpétuoCriptografia RSADivisibilidadeDivisibilityModular arithmeticPerpetual calendarRSA CryptographyTópicos em Aritmética Modular são raramente trabalhados no Ensino Básico e poucos professores possuem formação adequada sobre o assunto. Nessa dissertação buscou-se retratar premissas conceituais que colaborem com a formação do professor e sua prática, em alguns tópicos sobre Aritmética Modular. Propôs-se a tratar previamente conceitos iniciais em torno da ideia de divisibilidade e, sequencialmente, introduzir o conceito de congruência de maneira natural. Procurou-se proporcionar o aprofundamento no tema e clareza no entendimento teórico, fundamentando a apresentação dos resultados e teoremas relacionados, através de aplicações e realizações de exemplos diversos e não triviais. Dessa forma mostrou-se resultados relevantes do estudo das congruências como o Teorema de Fermat, Teorema de Euler e classes de equivalência. De modo a ilustrar algumas aplicações dos resultados tratados, apresenta-se o sistema de Criptografia RSA e o Calendário Perpétuo. Como conclusão, expôs-se uma proposta de sequência didática para os anos finais do Ensino Fundamental, evidenciando alguns conceitos e resultados da Aritmética Modular presentes no currículo de Matemática dessa etapa de ensino, segundo a Base Nacional Comum Curricular. Para embasar a sequência didática, utilizou-se da análise das grandezas e construções aritméticas e algébricas possíveis no calendário atual, adotando como norteador as conclusões realizadas acerca do Calendário Perpétuo e, consequentemente, sobre o Teorema de Zeller.Topics in Modular Arithmetic are rarely worked in Basic Education and few teachers have proper training on the subject. In this dissertation, we sought to portray conceptual premises that collaborate with the teacher training and its practice in some topics on Modular Arithmetic. It was proposed to previously treat initial concepts around the idea of divisibility and, sequentially, to introduce the concept of congruence in a natural way. It sought to provide a deeper understanding of the theme and clarity in the theoretical understanding, supporting the presentation of the results and theorems related through applications and achievements of diverse and non-trivial examples. In this sense, relevant results from the study of congruences were shown, such as Fermats Theorem, Eulers Theorem, and equivalence classes. The RSA Cryptography system and the Perpetual Calendar were presented to illustrate some applications of the treated results. In conclusion, a didactic sequence proposal was presented for the final years of Elementary School, showing some concepts and results of Modular Arithmetic present in the Mathematics curriculum of this teaching stage and according to the Common National Curricular Base. To support the didactic sequence, it was used the analysis of the arithmetic and algebraic quantities and constructions possible in the current calendar, adopting as a guideline the conclusions made about the Perpetual Calendar and, consequently, about the Zeller Theorem.Biblioteca Digitais de Teses e Dissertações da USPPicon, Tiago HenriqueBruxelas, Ana Catarina2020-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55136/tde-22012021-113841/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-08-09T23:06:02Zoai:teses.usp.br:tde-22012021-113841Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-09T23:06:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Aritmética modular e aplicações: criptografia RSA e calendário perpétuo Modular arithmetic and applications: RSA cryptography and perpetual calendar |
| title |
Aritmética modular e aplicações: criptografia RSA e calendário perpétuo |
| spellingShingle |
Aritmética modular e aplicações: criptografia RSA e calendário perpétuo Bruxelas, Ana Catarina Aritmética modular Calendário perpétuo Criptografia RSA Divisibilidade Divisibility Modular arithmetic Perpetual calendar RSA Cryptography |
| title_short |
Aritmética modular e aplicações: criptografia RSA e calendário perpétuo |
| title_full |
Aritmética modular e aplicações: criptografia RSA e calendário perpétuo |
| title_fullStr |
Aritmética modular e aplicações: criptografia RSA e calendário perpétuo |
| title_full_unstemmed |
Aritmética modular e aplicações: criptografia RSA e calendário perpétuo |
| title_sort |
Aritmética modular e aplicações: criptografia RSA e calendário perpétuo |
| author |
Bruxelas, Ana Catarina |
| author_facet |
Bruxelas, Ana Catarina |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Picon, Tiago Henrique |
| dc.contributor.author.fl_str_mv |
Bruxelas, Ana Catarina |
| dc.subject.por.fl_str_mv |
Aritmética modular Calendário perpétuo Criptografia RSA Divisibilidade Divisibility Modular arithmetic Perpetual calendar RSA Cryptography |
| topic |
Aritmética modular Calendário perpétuo Criptografia RSA Divisibilidade Divisibility Modular arithmetic Perpetual calendar RSA Cryptography |
| description |
Tópicos em Aritmética Modular são raramente trabalhados no Ensino Básico e poucos professores possuem formação adequada sobre o assunto. Nessa dissertação buscou-se retratar premissas conceituais que colaborem com a formação do professor e sua prática, em alguns tópicos sobre Aritmética Modular. Propôs-se a tratar previamente conceitos iniciais em torno da ideia de divisibilidade e, sequencialmente, introduzir o conceito de congruência de maneira natural. Procurou-se proporcionar o aprofundamento no tema e clareza no entendimento teórico, fundamentando a apresentação dos resultados e teoremas relacionados, através de aplicações e realizações de exemplos diversos e não triviais. Dessa forma mostrou-se resultados relevantes do estudo das congruências como o Teorema de Fermat, Teorema de Euler e classes de equivalência. De modo a ilustrar algumas aplicações dos resultados tratados, apresenta-se o sistema de Criptografia RSA e o Calendário Perpétuo. Como conclusão, expôs-se uma proposta de sequência didática para os anos finais do Ensino Fundamental, evidenciando alguns conceitos e resultados da Aritmética Modular presentes no currículo de Matemática dessa etapa de ensino, segundo a Base Nacional Comum Curricular. Para embasar a sequência didática, utilizou-se da análise das grandezas e construções aritméticas e algébricas possíveis no calendário atual, adotando como norteador as conclusões realizadas acerca do Calendário Perpétuo e, consequentemente, sobre o Teorema de Zeller. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-12-07 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55136/tde-22012021-113841/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55136/tde-22012021-113841/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258376908570624 |