From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteria
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11137/tde-07122022-122617/ |
Resumo: | Plant growth-promoting bacteria (PGPB) may play an important role in the agriculture in the future due to the ability of these bacteria in promote growth without causing any type of environmental damage. Besides, they can increase the plant resilience against biotic and abiotic stress and improve nutrient uptake. Nevertheless, only a few works have studied the genetic architecture of the response to PGPB. Another emerging field is the high-throughput phenotyping (HTP) which can be used to improve the assessment of the new phenotypes and be integrated in genetics studies. Based on this, we study the genetic architect of the response to PGPB using a public tropical association panel containing 360 inbreeds lines genotyped using genotype-by-sequence methodology with 13,826 single-nucleotide polymorphisms using RGB, multi, and hyperspectral cameras, besides the traditional phenotypes. Also, we develop a low-cost HTP platform for greenhouses experiments. In addition, several single-trait, multi-trait, machine learning models and its application in the context of genetics studies is discussed. Collectively, our results reveal the usefulness of PGPB in increase plant resilience and the applications of HTP phenotypes in genetics studies to dissect the genetic architecture and improve the accuracy in predictive models. |
| id |
USP_3255893a17bed33d5efebfcf8da9a814 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-07122022-122617 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteriaDo pixel a informação: como fenotipagem de alto rendimento pode avaliar a arquitetura genética e melhor a capacidade preditiva em milho sob inoculação de bactérias promotoras de crescimento de plantas?Aprendizado de máquinaFenômicaGenomic predictionGWASGWASHiperspectralHyperspectralMachine learningMultispectralMultispectral imagesPhenomicsPredição genômicaShovelomicsShovelomicsPlant growth-promoting bacteria (PGPB) may play an important role in the agriculture in the future due to the ability of these bacteria in promote growth without causing any type of environmental damage. Besides, they can increase the plant resilience against biotic and abiotic stress and improve nutrient uptake. Nevertheless, only a few works have studied the genetic architecture of the response to PGPB. Another emerging field is the high-throughput phenotyping (HTP) which can be used to improve the assessment of the new phenotypes and be integrated in genetics studies. Based on this, we study the genetic architect of the response to PGPB using a public tropical association panel containing 360 inbreeds lines genotyped using genotype-by-sequence methodology with 13,826 single-nucleotide polymorphisms using RGB, multi, and hyperspectral cameras, besides the traditional phenotypes. Also, we develop a low-cost HTP platform for greenhouses experiments. In addition, several single-trait, multi-trait, machine learning models and its application in the context of genetics studies is discussed. Collectively, our results reveal the usefulness of PGPB in increase plant resilience and the applications of HTP phenotypes in genetics studies to dissect the genetic architecture and improve the accuracy in predictive models.Bactérias promotoras de crescimento de plantas (BPCP) podem ter um papel crucial no futuro da agricultura devido a sua capacidade de promover o crescimento de plantas, sem causar nenhum tipo de dano ambiental. Além disso, BPCP possuem a capacidade de aumentar a resiliência do seu hospedeiro contra estresses bióticos e abióticos, além de promover o aumento da absorção de nutrientes. No entanto, poucos trabalhos estudaram a arquitetura genética da resposta ao BPCP. Outro campo emergente é a fenotipagem de alto rendimento (FAR) que pode ser usada para melhorar a avaliação dos novos fenótipos e ser integrada em estudos de arquitetura genética. Com base nisso, estudamos a arquitetura genética da resposta as BPCP usando um painel público de associação de milho tropical contendo 360 linhagens genotipadas usando a metodologia genotype-by-sequence com um total de 13.826 polimorfismos de nucleotídeo único (SNPs). Para as avaliações foram utilizadas câmeras RGB, multi e hiperespectral, além dos fenótipos tradicionais. Além disso, desenvolvemos uma plataforma de FAR de baixo custo para experimentos em casa de vegetações. No trabalho são discutidos vários modelos single, multi-trait e de aprendizado de máquina, e suas aplicações no contexto de estudos genéticos. Coletivamente, nossos resultados revelam a utilidade do BPCP no aumento da resiliência das plantas e as aplicações dos fenótipos FAR em estudos genéticos para dissecar a arquitetura genética e melhorar a acurácia em modelos preditivos.Biblioteca Digitais de Teses e Dissertações da USPFritsche Neto, RobertoYassue, Rafael Massahiro2022-09-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11137/tde-07122022-122617/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-12-12T17:49:52Zoai:teses.usp.br:tde-07122022-122617Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-12-12T17:49:52Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteria Do pixel a informação: como fenotipagem de alto rendimento pode avaliar a arquitetura genética e melhor a capacidade preditiva em milho sob inoculação de bactérias promotoras de crescimento de plantas? |
| title |
From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteria |
| spellingShingle |
From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteria Yassue, Rafael Massahiro Aprendizado de máquina Fenômica Genomic prediction GWAS GWAS Hiperspectral Hyperspectral Machine learning Multispectral Multispectral images Phenomics Predição genômica Shovelomics Shovelomics |
| title_short |
From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteria |
| title_full |
From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteria |
| title_fullStr |
From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteria |
| title_full_unstemmed |
From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteria |
| title_sort |
From pixel to knowledge: how high-throughput phenotyping helps to dissect the genetic architecture and improves predictive ability in maize under inoculation with plant growth-promoting bacteria |
| author |
Yassue, Rafael Massahiro |
| author_facet |
Yassue, Rafael Massahiro |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Fritsche Neto, Roberto |
| dc.contributor.author.fl_str_mv |
Yassue, Rafael Massahiro |
| dc.subject.por.fl_str_mv |
Aprendizado de máquina Fenômica Genomic prediction GWAS GWAS Hiperspectral Hyperspectral Machine learning Multispectral Multispectral images Phenomics Predição genômica Shovelomics Shovelomics |
| topic |
Aprendizado de máquina Fenômica Genomic prediction GWAS GWAS Hiperspectral Hyperspectral Machine learning Multispectral Multispectral images Phenomics Predição genômica Shovelomics Shovelomics |
| description |
Plant growth-promoting bacteria (PGPB) may play an important role in the agriculture in the future due to the ability of these bacteria in promote growth without causing any type of environmental damage. Besides, they can increase the plant resilience against biotic and abiotic stress and improve nutrient uptake. Nevertheless, only a few works have studied the genetic architecture of the response to PGPB. Another emerging field is the high-throughput phenotyping (HTP) which can be used to improve the assessment of the new phenotypes and be integrated in genetics studies. Based on this, we study the genetic architect of the response to PGPB using a public tropical association panel containing 360 inbreeds lines genotyped using genotype-by-sequence methodology with 13,826 single-nucleotide polymorphisms using RGB, multi, and hyperspectral cameras, besides the traditional phenotypes. Also, we develop a low-cost HTP platform for greenhouses experiments. In addition, several single-trait, multi-trait, machine learning models and its application in the context of genetics studies is discussed. Collectively, our results reveal the usefulness of PGPB in increase plant resilience and the applications of HTP phenotypes in genetics studies to dissect the genetic architecture and improve the accuracy in predictive models. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-09-09 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-07122022-122617/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11137/tde-07122022-122617/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815257950345756672 |