Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Ganzeli, Heitor de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26122014-122621/
Resumo: A Web é a aplicação mais popular da Internet e, desde sua criação, gerou mudanças de diversas maneiras na vida das pessoas. Esse é um dos motivos que a transformou em objeto de estudo de diversas pesquisas de cunho social, tecnológico econômico e político. A metodologia descrita nesta dissertação pode ser entendida como uma extensão do projeto TIC Web, que foi desenvolvido como parceria entre o NIC.br, o escritório do W3C Brasil e o instituto InWeb para estudar características de qualidade da Web Brasileira. Nesse sentido, a presente metodologia possui o objetivo de automatizar análises de domínios e sites Web, principalmente com base nos resultados sobre a Web Governamental Brasileira obtidos pelo TIC Web. Ou seja, o presente trabalho se foca na definição e aplicação de metodologia baseada em técnicas de aprendizado de máquina para a automatização das análises de domínios Web, visando praticidade na execução da categorização de sites Web segundo critérios relacionados à qualidade percebida por seus usuários. Os tópicos aqui discutidos compreendem: a importância dos padrões abertos e elementos de desempenho para a determinação da qualidade de um site; fundamentos de aprendizado de máquina; o detalhamento das ferramentas utilizadas para coletar e extrair informações dos sites, bem como dos atributos e indicadores por elas adquiridos; a metodologia proposta, incluindo a descrição de diversos algoritmos utilizados; e, um caso de uso demonstrando sua aplicabilidade. Além disso, propõe-se como parte da metodologia de análise a utilização dos resultados de seus resultados para realizar a avaliação de sites segundo sua qualidade percebida.
id USP_3ad52091eca3fb86667bb0b117c1a334
oai_identifier_str oai:teses.usp.br:tde-26122014-122621
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.Methodology to analyze the quality of Web sites based in machini learning techniques.Aprendizado de máquinaMachine learningOpen standardsPadrões abertosPadrões WebQualidade de sitesWeb qualityWeb standardsA Web é a aplicação mais popular da Internet e, desde sua criação, gerou mudanças de diversas maneiras na vida das pessoas. Esse é um dos motivos que a transformou em objeto de estudo de diversas pesquisas de cunho social, tecnológico econômico e político. A metodologia descrita nesta dissertação pode ser entendida como uma extensão do projeto TIC Web, que foi desenvolvido como parceria entre o NIC.br, o escritório do W3C Brasil e o instituto InWeb para estudar características de qualidade da Web Brasileira. Nesse sentido, a presente metodologia possui o objetivo de automatizar análises de domínios e sites Web, principalmente com base nos resultados sobre a Web Governamental Brasileira obtidos pelo TIC Web. Ou seja, o presente trabalho se foca na definição e aplicação de metodologia baseada em técnicas de aprendizado de máquina para a automatização das análises de domínios Web, visando praticidade na execução da categorização de sites Web segundo critérios relacionados à qualidade percebida por seus usuários. Os tópicos aqui discutidos compreendem: a importância dos padrões abertos e elementos de desempenho para a determinação da qualidade de um site; fundamentos de aprendizado de máquina; o detalhamento das ferramentas utilizadas para coletar e extrair informações dos sites, bem como dos atributos e indicadores por elas adquiridos; a metodologia proposta, incluindo a descrição de diversos algoritmos utilizados; e, um caso de uso demonstrando sua aplicabilidade. Além disso, propõe-se como parte da metodologia de análise a utilização dos resultados de seus resultados para realizar a avaliação de sites segundo sua qualidade percebida.The World Wide Web is the most popular application throughout the Internet and, since its creation, it has changed people\'s lives in lots of ways, hence, it has become subject to several social, technological, economical and political researches. The methodology described in the present text may be unterstood as an extension of the TIC Web project, which was developed by a partnership among NIC.br, Brazilian W3C office and the InWeb institute in order to study some quality related issues about the Brazilian Web. Accordingly, the methodology presented in this work aims to automate analyses of Web domains and sites, mainly based on the results over the Brazilian Governmental Web obtained by TIC Web. In other words, the present project focus on the definition and use of a methodology dependent on machine learning in order to automate the analyses of extracted data, having the goal of easing the classification of Web sites according to the quality perceived by their users. Some of the discussed topics are as follows: the importance of Open Standards and performance features to defy the quality of a site; basics of machine learning; details of the tool applied to extract Web sites data, as well as its acquired parameters and indicators; the proposed methodology, including the description of applied algorithms; and a use case evincing its applicability. Additionally, it is proposed, as part of the methodology, the utilization of the results obtained by the domain analysis to evaluate other websites in accordance to their perceived quality.Biblioteca Digitais de Teses e Dissertações da USPBressan, GraçaGanzeli, Heitor de Souza2014-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3141/tde-26122014-122621/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T12:55:58Zoai:teses.usp.br:tde-26122014-122621Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:55:58Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.
Methodology to analyze the quality of Web sites based in machini learning techniques.
title Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.
spellingShingle Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.
Ganzeli, Heitor de Souza
Aprendizado de máquina
Machine learning
Open standards
Padrões abertos
Padrões Web
Qualidade de sites
Web quality
Web standards
title_short Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.
title_full Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.
title_fullStr Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.
title_full_unstemmed Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.
title_sort Metodologia para a análise da qualidade de Web sites baseada em técnicas de aprendizado de máquina.
author Ganzeli, Heitor de Souza
author_facet Ganzeli, Heitor de Souza
author_role author
dc.contributor.none.fl_str_mv Bressan, Graça
dc.contributor.author.fl_str_mv Ganzeli, Heitor de Souza
dc.subject.por.fl_str_mv Aprendizado de máquina
Machine learning
Open standards
Padrões abertos
Padrões Web
Qualidade de sites
Web quality
Web standards
topic Aprendizado de máquina
Machine learning
Open standards
Padrões abertos
Padrões Web
Qualidade de sites
Web quality
Web standards
description A Web é a aplicação mais popular da Internet e, desde sua criação, gerou mudanças de diversas maneiras na vida das pessoas. Esse é um dos motivos que a transformou em objeto de estudo de diversas pesquisas de cunho social, tecnológico econômico e político. A metodologia descrita nesta dissertação pode ser entendida como uma extensão do projeto TIC Web, que foi desenvolvido como parceria entre o NIC.br, o escritório do W3C Brasil e o instituto InWeb para estudar características de qualidade da Web Brasileira. Nesse sentido, a presente metodologia possui o objetivo de automatizar análises de domínios e sites Web, principalmente com base nos resultados sobre a Web Governamental Brasileira obtidos pelo TIC Web. Ou seja, o presente trabalho se foca na definição e aplicação de metodologia baseada em técnicas de aprendizado de máquina para a automatização das análises de domínios Web, visando praticidade na execução da categorização de sites Web segundo critérios relacionados à qualidade percebida por seus usuários. Os tópicos aqui discutidos compreendem: a importância dos padrões abertos e elementos de desempenho para a determinação da qualidade de um site; fundamentos de aprendizado de máquina; o detalhamento das ferramentas utilizadas para coletar e extrair informações dos sites, bem como dos atributos e indicadores por elas adquiridos; a metodologia proposta, incluindo a descrição de diversos algoritmos utilizados; e, um caso de uso demonstrando sua aplicabilidade. Além disso, propõe-se como parte da metodologia de análise a utilização dos resultados de seus resultados para realizar a avaliação de sites segundo sua qualidade percebida.
publishDate 2014
dc.date.none.fl_str_mv 2014-03-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26122014-122621/
url http://www.teses.usp.br/teses/disponiveis/3/3141/tde-26122014-122621/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279236501241856