Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares

Detalhes bibliográficos
Ano de defesa: 2001
Autor(a) principal: Flamino, Reinaldo de Sales
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18133/tde-01062016-142950/
Resumo: Este trabalho propõe uma extensão do método de propagação de feixe (BPM - Beam Propagation Method) para a análise de guias de ondas ópticos e acopladores baseados em materiais não-lineares do tipo Kerr. Este método se destina à investigação de estruturas onde a utilização da equação escalar de Helmholtz (EEH) em seu limite paraxial não mais se aplica. Os métodos desenvolvidos para este fim são denominados na literatura como métodos de propagação de feixe de ângulo largo. O formalismo aqui desenvolvido é baseado na técnica das diferenças finitas e nos esquemas de Crank-Nicholson (CN) e Douglas generalizado (GD). Estes esquemas apresentam como característica o fato de apresentarem um erro de truncamento em relação ao passo de discretização transversal, &#916x, proporcional a O(&#916x2) para o primeiro e O(&#916x4). A convergência do método em ambos esquemas é otimizada pela utilização de um algoritmo interativo para a correção do campo no meio não-linear. O formalismo de ângulo largo é obtido pela expansão da EEH para os esquemas CN e GD em termos de polinômios aproximantes de Padé de ordem (1,0) e (1,1) para CN e GD, e (2,2) e (3,3) para CN. Os aproximantes de ordem superior a (1,1) apresentam sérios problemas de estabilidade. Este problema é eliminado pela rotação dos aproximantes no plano complexo. Duas condições de contorno nos extremos da janela computacional são também investigadas: 1) (TBC - Transparent Boundary Condition) e 2) condição de contorno absorvente (TAB - Transparent Absorbing Boundary). Estas condições de contorno possuem a facilidade de evitar que reflexões indesejáveis sejam transmitidas para dentro da janela computacional. Um estudo comparativo da influência destas condições de contorno na solução de guias de ondas ópticos não-lineares é também abordada neste trabalho.
id USP_3b1d662d41e6a9268db8560e75dba783
oai_identifier_str oai:teses.usp.br:tde-01062016-142950
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-linearesnot availableAproximantes de PadéBeam propagation methodDiferenças finitasFinite differencesGuias de ondas ópticos não-linearesMétodo de propagação de feixe de ângulo largoNonlinear optical waveguidesPadé approximantsEste trabalho propõe uma extensão do método de propagação de feixe (BPM - Beam Propagation Method) para a análise de guias de ondas ópticos e acopladores baseados em materiais não-lineares do tipo Kerr. Este método se destina à investigação de estruturas onde a utilização da equação escalar de Helmholtz (EEH) em seu limite paraxial não mais se aplica. Os métodos desenvolvidos para este fim são denominados na literatura como métodos de propagação de feixe de ângulo largo. O formalismo aqui desenvolvido é baseado na técnica das diferenças finitas e nos esquemas de Crank-Nicholson (CN) e Douglas generalizado (GD). Estes esquemas apresentam como característica o fato de apresentarem um erro de truncamento em relação ao passo de discretização transversal, &#916x, proporcional a O(&#916x2) para o primeiro e O(&#916x4). A convergência do método em ambos esquemas é otimizada pela utilização de um algoritmo interativo para a correção do campo no meio não-linear. O formalismo de ângulo largo é obtido pela expansão da EEH para os esquemas CN e GD em termos de polinômios aproximantes de Padé de ordem (1,0) e (1,1) para CN e GD, e (2,2) e (3,3) para CN. Os aproximantes de ordem superior a (1,1) apresentam sérios problemas de estabilidade. Este problema é eliminado pela rotação dos aproximantes no plano complexo. Duas condições de contorno nos extremos da janela computacional são também investigadas: 1) (TBC - Transparent Boundary Condition) e 2) condição de contorno absorvente (TAB - Transparent Absorbing Boundary). Estas condições de contorno possuem a facilidade de evitar que reflexões indesejáveis sejam transmitidas para dentro da janela computacional. Um estudo comparativo da influência destas condições de contorno na solução de guias de ondas ópticos não-lineares é também abordada neste trabalho.This work introduces an extension of the beam propagation method (BPM) for the analysis of optical waveguides and couplers based on Kerr-type nonlinear materials. This method is intended for the investigation of structures where the paraxial scalar Helmholtz equation (EEH) no longer holds. The numerical methods developed for this situation are known in the literature as wide-angle beam propagation methods. The formulation developed in this work is based on finite differences and on the Crank-Nicholson (CN) and Generalized Douglas (GD) schemes. These schemes are characterized by a truncation error with respect to the transverse discretization step, &#916x, proporcional to O(&#916x2) for the CN and to O(&#916x4) for the GD scheme. The convergence of the method for both schemes is optimized by the application of an iterative algorithm for the correction of the field in the nonlinear medium. The wide-angle formalism is obtained by the expansion of the EEH for the CN and GD schemes in terms of Padé approximant polynomials. The expansions addressed in this work utilize Padé approximants of order (1,0) and (1,1) for the CN and GD scheme, and (2,2) and (3,3) for the CN scheme. Approximants orders higher than (1,1) show serious stability problems. This problem is circumvented by rotating the approximants in the complex plane. Two boundary conditions on the edge of the computational window are also investigated: 1) transparent boundary condition (TBC) and 2) transparent absorbing boundary (TAB). These boundary conditions are necessary in order to avoid unwanted reflections back to computational domain. A comparative study of the influence of these boundary conditions on the solution of nonlinear optical waveguides is also addressed in this work.Biblioteca Digitais de Teses e Dissertações da USPBorges, Ben Hur VianaFlamino, Reinaldo de Sales2001-09-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18133/tde-01062016-142950/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:03:47Zoai:teses.usp.br:tde-01062016-142950Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:03:47Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares
not available
title Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares
spellingShingle Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares
Flamino, Reinaldo de Sales
Aproximantes de Padé
Beam propagation method
Diferenças finitas
Finite differences
Guias de ondas ópticos não-lineares
Método de propagação de feixe de ângulo largo
Nonlinear optical waveguides
Padé approximants
title_short Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares
title_full Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares
title_fullStr Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares
title_full_unstemmed Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares
title_sort Método da propagação de feixe de ângulo largo para análise de guias de ondas ópticos não-lineares
author Flamino, Reinaldo de Sales
author_facet Flamino, Reinaldo de Sales
author_role author
dc.contributor.none.fl_str_mv Borges, Ben Hur Viana
dc.contributor.author.fl_str_mv Flamino, Reinaldo de Sales
dc.subject.por.fl_str_mv Aproximantes de Padé
Beam propagation method
Diferenças finitas
Finite differences
Guias de ondas ópticos não-lineares
Método de propagação de feixe de ângulo largo
Nonlinear optical waveguides
Padé approximants
topic Aproximantes de Padé
Beam propagation method
Diferenças finitas
Finite differences
Guias de ondas ópticos não-lineares
Método de propagação de feixe de ângulo largo
Nonlinear optical waveguides
Padé approximants
description Este trabalho propõe uma extensão do método de propagação de feixe (BPM - Beam Propagation Method) para a análise de guias de ondas ópticos e acopladores baseados em materiais não-lineares do tipo Kerr. Este método se destina à investigação de estruturas onde a utilização da equação escalar de Helmholtz (EEH) em seu limite paraxial não mais se aplica. Os métodos desenvolvidos para este fim são denominados na literatura como métodos de propagação de feixe de ângulo largo. O formalismo aqui desenvolvido é baseado na técnica das diferenças finitas e nos esquemas de Crank-Nicholson (CN) e Douglas generalizado (GD). Estes esquemas apresentam como característica o fato de apresentarem um erro de truncamento em relação ao passo de discretização transversal, &#916x, proporcional a O(&#916x2) para o primeiro e O(&#916x4). A convergência do método em ambos esquemas é otimizada pela utilização de um algoritmo interativo para a correção do campo no meio não-linear. O formalismo de ângulo largo é obtido pela expansão da EEH para os esquemas CN e GD em termos de polinômios aproximantes de Padé de ordem (1,0) e (1,1) para CN e GD, e (2,2) e (3,3) para CN. Os aproximantes de ordem superior a (1,1) apresentam sérios problemas de estabilidade. Este problema é eliminado pela rotação dos aproximantes no plano complexo. Duas condições de contorno nos extremos da janela computacional são também investigadas: 1) (TBC - Transparent Boundary Condition) e 2) condição de contorno absorvente (TAB - Transparent Absorbing Boundary). Estas condições de contorno possuem a facilidade de evitar que reflexões indesejáveis sejam transmitidas para dentro da janela computacional. Um estudo comparativo da influência destas condições de contorno na solução de guias de ondas ópticos não-lineares é também abordada neste trabalho.
publishDate 2001
dc.date.none.fl_str_mv 2001-09-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/18/18133/tde-01062016-142950/
url http://www.teses.usp.br/teses/disponiveis/18/18133/tde-01062016-142950/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257785494929408