Natural Language Processing for Understanding Chronic Illness Patients\' Narratives
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/8/8139/tde-06012025-122305/ |
Resumo: | Natural Language Processing (NLP) has become increasingly prevalent in healthcare due to the digitization of medical records and advancements in computational techniques. Initially used for tasks such as automated coding and information extraction from electronic health records, NLP applications have expanded to include disease prediction, decision support, and patient experience analysis. However, applying NLP to healthcare data presents challenges, including deciphering complex medical language, ensuring patient privacy, and maintaining data integrity across various sources. This study focuses on analyzing the linguistic patterns in interviews with heart failure (HF) patients, an area that has received limited attention. While prior research has applied NLP to structured data and qualitative analysis of patient feedback, there is a gap in understanding the linguistic aspects of HF patients\' experiences. This study aims to fill this gap by applying NLP methods to transcribed interviews of 266 HF patients from the Heart Institute at the University of São Paulo, Brazil. The objectives are to characterize the linguistic patterns patients use to describe their experiences and to demonstrate how NLP methods can be applied to study narratives about chronic illnesses. My methods include Topic Detection with BERTopic, Sentiment Analysis, and Emotion Detection, complemented by Inferential Analyses to test interactions between extracted variables and patients narratives. The findings aim to uncover relevant linguistic information to better characterize the experiences of HF patients and provide healthcare professionals with insights into handling the sensitive aspects of the disease. This study aims to contribute to the broader understanding of the social and cultural dimensions of heart failure and the crucial role language plays in patient care and communication. The methods applied to this research can also be adapted to other studies on Chronic Illness narratives |
| id |
USP_41d66692d02cfd4222d40673a4c908bd |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-06012025-122305 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Natural Language Processing for Understanding Chronic Illness Patients\' NarrativesProcessamento de Linguagem Natural para o Estudo de Narrativas de Pacientes com Doenças CrônicasAnálise de SentimentoClinical Natural Language ProcessingHeart FailureInsuficiência CardíacaModelagem de TópicosNatural Language ProcessingProcessamento de Linguagem NaturalProcessamento de Linguagem Natural ClínicoSentiment AnalysisTopic ModelingNatural Language Processing (NLP) has become increasingly prevalent in healthcare due to the digitization of medical records and advancements in computational techniques. Initially used for tasks such as automated coding and information extraction from electronic health records, NLP applications have expanded to include disease prediction, decision support, and patient experience analysis. However, applying NLP to healthcare data presents challenges, including deciphering complex medical language, ensuring patient privacy, and maintaining data integrity across various sources. This study focuses on analyzing the linguistic patterns in interviews with heart failure (HF) patients, an area that has received limited attention. While prior research has applied NLP to structured data and qualitative analysis of patient feedback, there is a gap in understanding the linguistic aspects of HF patients\' experiences. This study aims to fill this gap by applying NLP methods to transcribed interviews of 266 HF patients from the Heart Institute at the University of São Paulo, Brazil. The objectives are to characterize the linguistic patterns patients use to describe their experiences and to demonstrate how NLP methods can be applied to study narratives about chronic illnesses. My methods include Topic Detection with BERTopic, Sentiment Analysis, and Emotion Detection, complemented by Inferential Analyses to test interactions between extracted variables and patients narratives. The findings aim to uncover relevant linguistic information to better characterize the experiences of HF patients and provide healthcare professionals with insights into handling the sensitive aspects of the disease. This study aims to contribute to the broader understanding of the social and cultural dimensions of heart failure and the crucial role language plays in patient care and communication. The methods applied to this research can also be adapted to other studies on Chronic Illness narrativesO Processamento de Linguagem Natural (PLN) tem se tornado cada vez mais usado na área da saúde devido à digitalização dos registros médicos e aos avanços nas técnicas computacionais. Inicialmente utilizado para tarefas como codificação automatizada e extração de informações de prontuários médicos, as aplicações de PLN se expandiram para incluir a predição de doenças, suporte à decisão e análise da experiência dos pacientes. Aplicar PLN a dados de saúde apresenta desafios, incluindo o entendimento da complexidade da linguagem médica, a garantia da privacidade dos dados de pacientes e a manutenção da integridade dos dados provenientes de diversas fontes. Este estudo analisa os padrões linguísticos em entrevistas com pacientes de insuficiência cardíaca (IC). Estudos linguísticos de narrativas de pacientes com IC são ainda escassos. Enquanto pesquisas anteriores aplicaram PLN a dados estruturados e análise qualitativa de feedback de pacientes, há uma lacuna na compreensão dos aspectos linguísticos das experiências dos pacientes com IC. Este estudo visa preencher essa lacuna aplicando métodos de PLN a entrevistas transcritas de 266 pacientes com IC do Instituto do Coração, da Universidade de São Paulo, Brasil. Os objetivos são caracterizar os padrões linguísticos que os pacientes usam para descrever suas experiências e demonstrar como os métodos de PLN podem ser aplicados ao estudo de narrativas sobre doenças crônicas. Os métodos incluem Detecção de Tópicos com BERTopic, Análise de Sentimentos e Detecção de Emoções, complementados por Análises Inferenciais para testar as interações entre as variáveis extraídas por PLN e as narrativas dos pacientes. Pretende-se extrair informações linguísticas relevantes para melhor caracterizar as experiências dos pacientes com IC e munir profissionais de saúde com informações sobre as experiências dos pacientes com a doença. Este estudo busca contribuir para uma compreensão mais ampla das dimensões sociais e culturais da insuficiência cardíaca e do papel crucial que a linguagem desempenha no cuidado e na comunicação com os pacientes. Adicionalmente, os métodos aplicados nesta pesquisa também podem ser adaptados para outros estudos sobre narrativas de Doenças CrônicasBiblioteca Digitais de Teses e Dissertações da USPLopes, Marcos FernandoIto, Viviane2024-08-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/8/8139/tde-06012025-122305/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-01-08T14:41:02Zoai:teses.usp.br:tde-06012025-122305Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-01-08T14:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Natural Language Processing for Understanding Chronic Illness Patients\' Narratives Processamento de Linguagem Natural para o Estudo de Narrativas de Pacientes com Doenças Crônicas |
| title |
Natural Language Processing for Understanding Chronic Illness Patients\' Narratives |
| spellingShingle |
Natural Language Processing for Understanding Chronic Illness Patients\' Narratives Ito, Viviane Análise de Sentimento Clinical Natural Language Processing Heart Failure Insuficiência Cardíaca Modelagem de Tópicos Natural Language Processing Processamento de Linguagem Natural Processamento de Linguagem Natural Clínico Sentiment Analysis Topic Modeling |
| title_short |
Natural Language Processing for Understanding Chronic Illness Patients\' Narratives |
| title_full |
Natural Language Processing for Understanding Chronic Illness Patients\' Narratives |
| title_fullStr |
Natural Language Processing for Understanding Chronic Illness Patients\' Narratives |
| title_full_unstemmed |
Natural Language Processing for Understanding Chronic Illness Patients\' Narratives |
| title_sort |
Natural Language Processing for Understanding Chronic Illness Patients\' Narratives |
| author |
Ito, Viviane |
| author_facet |
Ito, Viviane |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Lopes, Marcos Fernando |
| dc.contributor.author.fl_str_mv |
Ito, Viviane |
| dc.subject.por.fl_str_mv |
Análise de Sentimento Clinical Natural Language Processing Heart Failure Insuficiência Cardíaca Modelagem de Tópicos Natural Language Processing Processamento de Linguagem Natural Processamento de Linguagem Natural Clínico Sentiment Analysis Topic Modeling |
| topic |
Análise de Sentimento Clinical Natural Language Processing Heart Failure Insuficiência Cardíaca Modelagem de Tópicos Natural Language Processing Processamento de Linguagem Natural Processamento de Linguagem Natural Clínico Sentiment Analysis Topic Modeling |
| description |
Natural Language Processing (NLP) has become increasingly prevalent in healthcare due to the digitization of medical records and advancements in computational techniques. Initially used for tasks such as automated coding and information extraction from electronic health records, NLP applications have expanded to include disease prediction, decision support, and patient experience analysis. However, applying NLP to healthcare data presents challenges, including deciphering complex medical language, ensuring patient privacy, and maintaining data integrity across various sources. This study focuses on analyzing the linguistic patterns in interviews with heart failure (HF) patients, an area that has received limited attention. While prior research has applied NLP to structured data and qualitative analysis of patient feedback, there is a gap in understanding the linguistic aspects of HF patients\' experiences. This study aims to fill this gap by applying NLP methods to transcribed interviews of 266 HF patients from the Heart Institute at the University of São Paulo, Brazil. The objectives are to characterize the linguistic patterns patients use to describe their experiences and to demonstrate how NLP methods can be applied to study narratives about chronic illnesses. My methods include Topic Detection with BERTopic, Sentiment Analysis, and Emotion Detection, complemented by Inferential Analyses to test interactions between extracted variables and patients narratives. The findings aim to uncover relevant linguistic information to better characterize the experiences of HF patients and provide healthcare professionals with insights into handling the sensitive aspects of the disease. This study aims to contribute to the broader understanding of the social and cultural dimensions of heart failure and the crucial role language plays in patient care and communication. The methods applied to this research can also be adapted to other studies on Chronic Illness narratives |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08-09 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/8/8139/tde-06012025-122305/ |
| url |
https://www.teses.usp.br/teses/disponiveis/8/8139/tde-06012025-122305/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1831214824974974976 |