Natural Language Processing for Understanding Chronic Illness Patients\' Narratives

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Ito, Viviane
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/8/8139/tde-06012025-122305/
Resumo: Natural Language Processing (NLP) has become increasingly prevalent in healthcare due to the digitization of medical records and advancements in computational techniques. Initially used for tasks such as automated coding and information extraction from electronic health records, NLP applications have expanded to include disease prediction, decision support, and patient experience analysis. However, applying NLP to healthcare data presents challenges, including deciphering complex medical language, ensuring patient privacy, and maintaining data integrity across various sources. This study focuses on analyzing the linguistic patterns in interviews with heart failure (HF) patients, an area that has received limited attention. While prior research has applied NLP to structured data and qualitative analysis of patient feedback, there is a gap in understanding the linguistic aspects of HF patients\' experiences. This study aims to fill this gap by applying NLP methods to transcribed interviews of 266 HF patients from the Heart Institute at the University of São Paulo, Brazil. The objectives are to characterize the linguistic patterns patients use to describe their experiences and to demonstrate how NLP methods can be applied to study narratives about chronic illnesses. My methods include Topic Detection with BERTopic, Sentiment Analysis, and Emotion Detection, complemented by Inferential Analyses to test interactions between extracted variables and patients narratives. The findings aim to uncover relevant linguistic information to better characterize the experiences of HF patients and provide healthcare professionals with insights into handling the sensitive aspects of the disease. This study aims to contribute to the broader understanding of the social and cultural dimensions of heart failure and the crucial role language plays in patient care and communication. The methods applied to this research can also be adapted to other studies on Chronic Illness narratives
id USP_41d66692d02cfd4222d40673a4c908bd
oai_identifier_str oai:teses.usp.br:tde-06012025-122305
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Natural Language Processing for Understanding Chronic Illness Patients\' NarrativesProcessamento de Linguagem Natural para o Estudo de Narrativas de Pacientes com Doenças CrônicasAnálise de SentimentoClinical Natural Language ProcessingHeart FailureInsuficiência CardíacaModelagem de TópicosNatural Language ProcessingProcessamento de Linguagem NaturalProcessamento de Linguagem Natural ClínicoSentiment AnalysisTopic ModelingNatural Language Processing (NLP) has become increasingly prevalent in healthcare due to the digitization of medical records and advancements in computational techniques. Initially used for tasks such as automated coding and information extraction from electronic health records, NLP applications have expanded to include disease prediction, decision support, and patient experience analysis. However, applying NLP to healthcare data presents challenges, including deciphering complex medical language, ensuring patient privacy, and maintaining data integrity across various sources. This study focuses on analyzing the linguistic patterns in interviews with heart failure (HF) patients, an area that has received limited attention. While prior research has applied NLP to structured data and qualitative analysis of patient feedback, there is a gap in understanding the linguistic aspects of HF patients\' experiences. This study aims to fill this gap by applying NLP methods to transcribed interviews of 266 HF patients from the Heart Institute at the University of São Paulo, Brazil. The objectives are to characterize the linguistic patterns patients use to describe their experiences and to demonstrate how NLP methods can be applied to study narratives about chronic illnesses. My methods include Topic Detection with BERTopic, Sentiment Analysis, and Emotion Detection, complemented by Inferential Analyses to test interactions between extracted variables and patients narratives. The findings aim to uncover relevant linguistic information to better characterize the experiences of HF patients and provide healthcare professionals with insights into handling the sensitive aspects of the disease. This study aims to contribute to the broader understanding of the social and cultural dimensions of heart failure and the crucial role language plays in patient care and communication. The methods applied to this research can also be adapted to other studies on Chronic Illness narrativesO Processamento de Linguagem Natural (PLN) tem se tornado cada vez mais usado na área da saúde devido à digitalização dos registros médicos e aos avanços nas técnicas computacionais. Inicialmente utilizado para tarefas como codificação automatizada e extração de informações de prontuários médicos, as aplicações de PLN se expandiram para incluir a predição de doenças, suporte à decisão e análise da experiência dos pacientes. Aplicar PLN a dados de saúde apresenta desafios, incluindo o entendimento da complexidade da linguagem médica, a garantia da privacidade dos dados de pacientes e a manutenção da integridade dos dados provenientes de diversas fontes. Este estudo analisa os padrões linguísticos em entrevistas com pacientes de insuficiência cardíaca (IC). Estudos linguísticos de narrativas de pacientes com IC são ainda escassos. Enquanto pesquisas anteriores aplicaram PLN a dados estruturados e análise qualitativa de feedback de pacientes, há uma lacuna na compreensão dos aspectos linguísticos das experiências dos pacientes com IC. Este estudo visa preencher essa lacuna aplicando métodos de PLN a entrevistas transcritas de 266 pacientes com IC do Instituto do Coração, da Universidade de São Paulo, Brasil. Os objetivos são caracterizar os padrões linguísticos que os pacientes usam para descrever suas experiências e demonstrar como os métodos de PLN podem ser aplicados ao estudo de narrativas sobre doenças crônicas. Os métodos incluem Detecção de Tópicos com BERTopic, Análise de Sentimentos e Detecção de Emoções, complementados por Análises Inferenciais para testar as interações entre as variáveis extraídas por PLN e as narrativas dos pacientes. Pretende-se extrair informações linguísticas relevantes para melhor caracterizar as experiências dos pacientes com IC e munir profissionais de saúde com informações sobre as experiências dos pacientes com a doença. Este estudo busca contribuir para uma compreensão mais ampla das dimensões sociais e culturais da insuficiência cardíaca e do papel crucial que a linguagem desempenha no cuidado e na comunicação com os pacientes. Adicionalmente, os métodos aplicados nesta pesquisa também podem ser adaptados para outros estudos sobre narrativas de Doenças CrônicasBiblioteca Digitais de Teses e Dissertações da USPLopes, Marcos FernandoIto, Viviane2024-08-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/8/8139/tde-06012025-122305/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-01-08T14:41:02Zoai:teses.usp.br:tde-06012025-122305Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-01-08T14:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Natural Language Processing for Understanding Chronic Illness Patients\' Narratives
Processamento de Linguagem Natural para o Estudo de Narrativas de Pacientes com Doenças Crônicas
title Natural Language Processing for Understanding Chronic Illness Patients\' Narratives
spellingShingle Natural Language Processing for Understanding Chronic Illness Patients\' Narratives
Ito, Viviane
Análise de Sentimento
Clinical Natural Language Processing
Heart Failure
Insuficiência Cardíaca
Modelagem de Tópicos
Natural Language Processing
Processamento de Linguagem Natural
Processamento de Linguagem Natural Clínico
Sentiment Analysis
Topic Modeling
title_short Natural Language Processing for Understanding Chronic Illness Patients\' Narratives
title_full Natural Language Processing for Understanding Chronic Illness Patients\' Narratives
title_fullStr Natural Language Processing for Understanding Chronic Illness Patients\' Narratives
title_full_unstemmed Natural Language Processing for Understanding Chronic Illness Patients\' Narratives
title_sort Natural Language Processing for Understanding Chronic Illness Patients\' Narratives
author Ito, Viviane
author_facet Ito, Viviane
author_role author
dc.contributor.none.fl_str_mv Lopes, Marcos Fernando
dc.contributor.author.fl_str_mv Ito, Viviane
dc.subject.por.fl_str_mv Análise de Sentimento
Clinical Natural Language Processing
Heart Failure
Insuficiência Cardíaca
Modelagem de Tópicos
Natural Language Processing
Processamento de Linguagem Natural
Processamento de Linguagem Natural Clínico
Sentiment Analysis
Topic Modeling
topic Análise de Sentimento
Clinical Natural Language Processing
Heart Failure
Insuficiência Cardíaca
Modelagem de Tópicos
Natural Language Processing
Processamento de Linguagem Natural
Processamento de Linguagem Natural Clínico
Sentiment Analysis
Topic Modeling
description Natural Language Processing (NLP) has become increasingly prevalent in healthcare due to the digitization of medical records and advancements in computational techniques. Initially used for tasks such as automated coding and information extraction from electronic health records, NLP applications have expanded to include disease prediction, decision support, and patient experience analysis. However, applying NLP to healthcare data presents challenges, including deciphering complex medical language, ensuring patient privacy, and maintaining data integrity across various sources. This study focuses on analyzing the linguistic patterns in interviews with heart failure (HF) patients, an area that has received limited attention. While prior research has applied NLP to structured data and qualitative analysis of patient feedback, there is a gap in understanding the linguistic aspects of HF patients\' experiences. This study aims to fill this gap by applying NLP methods to transcribed interviews of 266 HF patients from the Heart Institute at the University of São Paulo, Brazil. The objectives are to characterize the linguistic patterns patients use to describe their experiences and to demonstrate how NLP methods can be applied to study narratives about chronic illnesses. My methods include Topic Detection with BERTopic, Sentiment Analysis, and Emotion Detection, complemented by Inferential Analyses to test interactions between extracted variables and patients narratives. The findings aim to uncover relevant linguistic information to better characterize the experiences of HF patients and provide healthcare professionals with insights into handling the sensitive aspects of the disease. This study aims to contribute to the broader understanding of the social and cultural dimensions of heart failure and the crucial role language plays in patient care and communication. The methods applied to this research can also be adapted to other studies on Chronic Illness narratives
publishDate 2024
dc.date.none.fl_str_mv 2024-08-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/8/8139/tde-06012025-122305/
url https://www.teses.usp.br/teses/disponiveis/8/8139/tde-06012025-122305/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1831214824974974976