Small and time-efficient distribution-free predictive regions

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Reis, Victor Cândido
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-29082023-113330/
Resumo: Predicting a target variable (response) is often the main objective of many studies and investigations. In such scenarios, there are usually other variables, known as covariates, that are more readily available and can assist in the prediction process. Regression and classification methods aim to utilize the statistical associations between all available information to model the variable of interest. During such modeling, there is a significant emphasis on estimating regions that describe the fluctuations of the response, allowing for the quantification of the uncertainty of point estimates. Conformal prediction methods (VOVK; GAMMERMAN; SHAFER, 2005) are a class of methods that aim to provide regions with general shapes and high probability guarantees, assuming only exchangeability, which is a weaker assumption than independent and identically distributed data. This allows for extensive use in various applications. New methodologies have been developed to improve the theoretical properties and applicability of the original ideas, with a practical perspective on execution and computational cost. Motivated by this context, this work aims to enrich the class of conformal prediction methods, with a particular focus on regression problems and proposes a new method that better utilizes available information, provides greater generality in the format of the regions, and is more efficient in terms of computational cost. The proposed method was compared with previous works using simulation studies, and it achieved competitive results.
id USP_4d72ff72ee3c320c5172edb27293d382
oai_identifier_str oai:teses.usp.br:tde-29082023-113330
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Small and time-efficient distribution-free predictive regionsRegiões preditivas flexíveis, eficientes e livres-de-suposiçãoConformal prediction methodsConformal prediction methodsCost of executionCusto de execuçãoEfficiencyEficiênciaRegiõesRegionsRegressãoRegressionPredicting a target variable (response) is often the main objective of many studies and investigations. In such scenarios, there are usually other variables, known as covariates, that are more readily available and can assist in the prediction process. Regression and classification methods aim to utilize the statistical associations between all available information to model the variable of interest. During such modeling, there is a significant emphasis on estimating regions that describe the fluctuations of the response, allowing for the quantification of the uncertainty of point estimates. Conformal prediction methods (VOVK; GAMMERMAN; SHAFER, 2005) are a class of methods that aim to provide regions with general shapes and high probability guarantees, assuming only exchangeability, which is a weaker assumption than independent and identically distributed data. This allows for extensive use in various applications. New methodologies have been developed to improve the theoretical properties and applicability of the original ideas, with a practical perspective on execution and computational cost. Motivated by this context, this work aims to enrich the class of conformal prediction methods, with a particular focus on regression problems and proposes a new method that better utilizes available information, provides greater generality in the format of the regions, and is more efficient in terms of computational cost. The proposed method was compared with previous works using simulation studies, and it achieved competitive results.Frequentemente, prever uma variável alvo (resposta) é objeto de interesse de investigações e estudos. Nesse cenário, é comum existirem variáveis mais acessíveis (covariáveis) que podem ajudar no processo de previsão. Métodos de regressão e classificação surgem então com o objetivo de usar as associações estatísticas entre todas as informações disponíveis para modelar a variável de interesse. Há um grande foco, durante tal modelagem, em estimar regiões que descrevam a flutuação da resposta, possibilitando, por exemplo, quantificar a incerteza de estimativas pontuais. Conformal prediction é uma classe de métodos derivada de Vovk, Gammerman and Shafer (2005) que busca fornecer regiões com formas gerais e garantia de alta probabilidade, assumindo, basicamente, apenas permutabilidade das observações, suposição mais fraca do que dados independentes e identicamente distribuídos, o que permite seu uso extensivo. Novas metodologias têm sido desenvolvidas para aprimorar as propriedades teóricas dessa classe, bem como a aplicabilidade das ideias originais do ponto de vista prático de execução e custo computacional. Este trabalho objetivou enriquecer a classe de Conformal prediction com foco em problemas de regressão, propondo uma nova abordagem que reúne um melhor aproveitamento dos dados com uma maior generalidade no formato das regiões, em uma perspectiva de custo computacional mais eficiente. Resultados competitivos foram encontrados ao comparar o método proposto com trabalhos anteriores via estudos de simulação.Biblioteca Digitais de Teses e Dissertações da USPIzbicki, RafaelReis, Victor Cândido2023-05-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/104/104131/tde-29082023-113330/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2023-08-29T14:41:02Zoai:teses.usp.br:tde-29082023-113330Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212023-08-29T14:41:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Small and time-efficient distribution-free predictive regions
Regiões preditivas flexíveis, eficientes e livres-de-suposição
title Small and time-efficient distribution-free predictive regions
spellingShingle Small and time-efficient distribution-free predictive regions
Reis, Victor Cândido
Conformal prediction methods
Conformal prediction methods
Cost of execution
Custo de execução
Efficiency
Eficiência
Regiões
Regions
Regressão
Regression
title_short Small and time-efficient distribution-free predictive regions
title_full Small and time-efficient distribution-free predictive regions
title_fullStr Small and time-efficient distribution-free predictive regions
title_full_unstemmed Small and time-efficient distribution-free predictive regions
title_sort Small and time-efficient distribution-free predictive regions
author Reis, Victor Cândido
author_facet Reis, Victor Cândido
author_role author
dc.contributor.none.fl_str_mv Izbicki, Rafael
dc.contributor.author.fl_str_mv Reis, Victor Cândido
dc.subject.por.fl_str_mv Conformal prediction methods
Conformal prediction methods
Cost of execution
Custo de execução
Efficiency
Eficiência
Regiões
Regions
Regressão
Regression
topic Conformal prediction methods
Conformal prediction methods
Cost of execution
Custo de execução
Efficiency
Eficiência
Regiões
Regions
Regressão
Regression
description Predicting a target variable (response) is often the main objective of many studies and investigations. In such scenarios, there are usually other variables, known as covariates, that are more readily available and can assist in the prediction process. Regression and classification methods aim to utilize the statistical associations between all available information to model the variable of interest. During such modeling, there is a significant emphasis on estimating regions that describe the fluctuations of the response, allowing for the quantification of the uncertainty of point estimates. Conformal prediction methods (VOVK; GAMMERMAN; SHAFER, 2005) are a class of methods that aim to provide regions with general shapes and high probability guarantees, assuming only exchangeability, which is a weaker assumption than independent and identically distributed data. This allows for extensive use in various applications. New methodologies have been developed to improve the theoretical properties and applicability of the original ideas, with a practical perspective on execution and computational cost. Motivated by this context, this work aims to enrich the class of conformal prediction methods, with a particular focus on regression problems and proposes a new method that better utilizes available information, provides greater generality in the format of the regions, and is more efficient in terms of computational cost. The proposed method was compared with previous works using simulation studies, and it achieved competitive results.
publishDate 2023
dc.date.none.fl_str_mv 2023-05-02
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/104/104131/tde-29082023-113330/
url https://www.teses.usp.br/teses/disponiveis/104/104131/tde-29082023-113330/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258576355065856