Sugarcane plant detection and mapping for site-specific management
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11152/tde-14022022-164102/ |
Resumo: | The sugarcane production sector is one of the most adept at adopting technology to manage equipment and sugarcane fields. Developing new technologies and optimizing the use of the technologies already used in other production systems is essential for successful field management. The optimized use of technologies will help in the localized management to increase viability, maximize profitability, and minimize the environmental impacts of sugarcane production. Technologies to detect, measure, and spatialize plants can be one of the solutions for the row level management. Moreover, this data can be used to temporally follow the development of sugarcane fields, being essential data for localized field management. The spatialization of plants and plant spacing can help in the investigation of factors that influence sugarcane yield. In this context, the overall objective of the thesis was to explore tools and methods for detecting plants at row level to improve and support localized management of sugarcane plantations. An approach to sugarcane plant detection using photoelectric and ultrasonic sensors was developed and evaluated. Aerial image and ground sensors have been tested to detect and measure sugarcane plant spacing. Temporal evaluation of sensors and aerial images during four different stages of sugarcane development was made to propose the best time to detect sugarcane plants and measure the plant spacing. High-resolution images were used to map plant population and plant spacing. These two data were used to check the relationship between slope, path angle, and the plant population, furthermore, map regions with higher susceptibility to plant reduction over the years. At last, a spatio-temporal analysis of yield and plant spacing was performed to verify the relationship between these two variables in regions with different yield potentials in commercial crops. Results show that ultrasonic and photoelectric sensor fusion associated with the machine learning model has accuracy above 95%. These two sensors and high-resolution images had the best accuracy and precision in detecting and measuring plant spacing at 31 and 47 days after harvest. Spatial and temporal analysis showed that regions with a terrain slope of 5-8% and greater than 8% with curved paths have an inferior number of plants compared to other regions. The local analysis identified that regions with steeper slopes and curved paths have high susceptibility of plant reduction over the years compared to other regions. Finally, yield loss within the sugarcane row occurs with increasing plant spacing. Regions with different yield potentials require different optimum populations to maximize yield. Low-yielding regions require a larger plant population and are more susceptible to lose in yield within the row with increasing plant spacing. |
id |
USP_5192e405e79534f9935bb18e8eaec449 |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-14022022-164102 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
|
spelling |
Sugarcane plant detection and mapping for site-specific managementDetecção e mapeamento de plantas de cana-de-açúcar para gerenciamento específico do localAgricultura de precisãoCrop sensingHigh-resolution imageImagem de alta resoluçãoPlant variabilityPrecision agricultureSensoriamento da culturaVariabilidade da culturaThe sugarcane production sector is one of the most adept at adopting technology to manage equipment and sugarcane fields. Developing new technologies and optimizing the use of the technologies already used in other production systems is essential for successful field management. The optimized use of technologies will help in the localized management to increase viability, maximize profitability, and minimize the environmental impacts of sugarcane production. Technologies to detect, measure, and spatialize plants can be one of the solutions for the row level management. Moreover, this data can be used to temporally follow the development of sugarcane fields, being essential data for localized field management. The spatialization of plants and plant spacing can help in the investigation of factors that influence sugarcane yield. In this context, the overall objective of the thesis was to explore tools and methods for detecting plants at row level to improve and support localized management of sugarcane plantations. An approach to sugarcane plant detection using photoelectric and ultrasonic sensors was developed and evaluated. Aerial image and ground sensors have been tested to detect and measure sugarcane plant spacing. Temporal evaluation of sensors and aerial images during four different stages of sugarcane development was made to propose the best time to detect sugarcane plants and measure the plant spacing. High-resolution images were used to map plant population and plant spacing. These two data were used to check the relationship between slope, path angle, and the plant population, furthermore, map regions with higher susceptibility to plant reduction over the years. At last, a spatio-temporal analysis of yield and plant spacing was performed to verify the relationship between these two variables in regions with different yield potentials in commercial crops. Results show that ultrasonic and photoelectric sensor fusion associated with the machine learning model has accuracy above 95%. These two sensors and high-resolution images had the best accuracy and precision in detecting and measuring plant spacing at 31 and 47 days after harvest. Spatial and temporal analysis showed that regions with a terrain slope of 5-8% and greater than 8% with curved paths have an inferior number of plants compared to other regions. The local analysis identified that regions with steeper slopes and curved paths have high susceptibility of plant reduction over the years compared to other regions. Finally, yield loss within the sugarcane row occurs with increasing plant spacing. Regions with different yield potentials require different optimum populations to maximize yield. Low-yielding regions require a larger plant population and are more susceptible to lose in yield within the row with increasing plant spacing.O setor de produção de cana-de-açúcar é um dos mais aptos a adotar tecnologia para gerenciar equipamentos e as lavouras de cana-de-açúcar. Desenvolver novas tecnologias e otimizar o uso das tecnologias já utilizadas em outros sistemas de produção é essencial para o sucesso da gestão das lavouras. O uso otimizado de tecnologias ajudará na gestão localizada a aumentar a viabilidade, maximizar a rentabilidade e minimizar os impactos ambientais da produção de cana-de-açúcar. Tecnologias para detectar, medir e espacializar plantas podem ser uma das soluções para o gerenciamento a nível de fileira. Além disso, estes dados podem ser usados para acompanhar temporariamente o desenvolvimento das lavouras de cana-de-açúcar, sendo dados essenciais para o gerenciamento localizado da lavoura. A espacialização das plantas e o espaçamento entre plantas podem ajudar na investigação dos fatores que influenciam a produtividade da cana-de-açúcar. Neste contexto, o objetivo geral da tese foi explorar ferramentas e métodos de detecção de plantas em nível de fileira para melhorar e apoiar o gerenciamento localizado de plantações de cana-de-açúcar. Uma abordagem para a detecção de plantas de cana-de-açúcar usando sensores fotoelétricos e ultrassônicos foi desenvolvida e avaliada. A imagem aérea e os sensores terrestres foram testados para detectar e medir o espaçamento entre plantas de cana-de-açúcar. A avaliação temporal dos sensores e imagens aéreas durante quatro estágios diferentes de desenvolvimento da cana-de-açúcar foi feita para propor o melhor momento para detectar plantas de cana-de-açúcar e medir o espaçamento entre as plantas. Imagens de alta resolução foram usadas para mapear a população e o espaçamento das plantas. Estes dois dados foram utilizados para verificar a relação entre declividade, ângulo do percurso e a população de plantas, além disso, mapear regiões com maior suscetibilidade à redução de plantas ao longo dos anos. Finalmente, foi realizada a análise espacial-temporal da produtividade e espaçamento de plantas para verificar a relação entre estas duas variáveis em regiões com diferentes potenciais produtivos em lavouras comerciais. Os resultados mostram que a fusão de sensores ultrassônico e fotoelétrico associada ao modelo de aprendizagem da máquina tem precisão acima de 95%. Estes dois sensores e imagens de alta resolução tiveram a melhor precisão e acurácia para detectar e medir o espaçamento das plantas em 31 e 47 dias após a colheita. A análise espacial e temporal mostrou que regiões com uma declive do terreno de 5-8% e maior que 8% com percursos curvos têm um número inferior de plantas em comparação com outras regiões. A análise local identificou que regiões com declives mais acentuados e caminhos curvos têm alta suscetibilidade de redução da planta ao longo dos anos, em comparação com outras regiões. Finalmente, a perda de produtividade dentro da fileira da cana de açúcar ocorre com o aumento do espaçamento entre as plantas. Regiões com diferentes potenciais produtivos requerem diferentes populações ótimas para maximizar a produtividade. Regiões de baixa produtividade requerem uma população de plantas maior e são mais suscetíveis a perder produtividade dentro da fileira com o aumento do espaçamento entre plantas.Biblioteca Digitais de Teses e Dissertações da USPMolin, Jose PauloMaldaner, Leonardo Felipe2021-11-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11152/tde-14022022-164102/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2022-04-05T19:28:02Zoai:teses.usp.br:tde-14022022-164102Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-04-05T19:28:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
Sugarcane plant detection and mapping for site-specific management Detecção e mapeamento de plantas de cana-de-açúcar para gerenciamento específico do local |
title |
Sugarcane plant detection and mapping for site-specific management |
spellingShingle |
Sugarcane plant detection and mapping for site-specific management Maldaner, Leonardo Felipe Agricultura de precisão Crop sensing High-resolution image Imagem de alta resolução Plant variability Precision agriculture Sensoriamento da cultura Variabilidade da cultura |
title_short |
Sugarcane plant detection and mapping for site-specific management |
title_full |
Sugarcane plant detection and mapping for site-specific management |
title_fullStr |
Sugarcane plant detection and mapping for site-specific management |
title_full_unstemmed |
Sugarcane plant detection and mapping for site-specific management |
title_sort |
Sugarcane plant detection and mapping for site-specific management |
author |
Maldaner, Leonardo Felipe |
author_facet |
Maldaner, Leonardo Felipe |
author_role |
author |
dc.contributor.none.fl_str_mv |
Molin, Jose Paulo |
dc.contributor.author.fl_str_mv |
Maldaner, Leonardo Felipe |
dc.subject.por.fl_str_mv |
Agricultura de precisão Crop sensing High-resolution image Imagem de alta resolução Plant variability Precision agriculture Sensoriamento da cultura Variabilidade da cultura |
topic |
Agricultura de precisão Crop sensing High-resolution image Imagem de alta resolução Plant variability Precision agriculture Sensoriamento da cultura Variabilidade da cultura |
description |
The sugarcane production sector is one of the most adept at adopting technology to manage equipment and sugarcane fields. Developing new technologies and optimizing the use of the technologies already used in other production systems is essential for successful field management. The optimized use of technologies will help in the localized management to increase viability, maximize profitability, and minimize the environmental impacts of sugarcane production. Technologies to detect, measure, and spatialize plants can be one of the solutions for the row level management. Moreover, this data can be used to temporally follow the development of sugarcane fields, being essential data for localized field management. The spatialization of plants and plant spacing can help in the investigation of factors that influence sugarcane yield. In this context, the overall objective of the thesis was to explore tools and methods for detecting plants at row level to improve and support localized management of sugarcane plantations. An approach to sugarcane plant detection using photoelectric and ultrasonic sensors was developed and evaluated. Aerial image and ground sensors have been tested to detect and measure sugarcane plant spacing. Temporal evaluation of sensors and aerial images during four different stages of sugarcane development was made to propose the best time to detect sugarcane plants and measure the plant spacing. High-resolution images were used to map plant population and plant spacing. These two data were used to check the relationship between slope, path angle, and the plant population, furthermore, map regions with higher susceptibility to plant reduction over the years. At last, a spatio-temporal analysis of yield and plant spacing was performed to verify the relationship between these two variables in regions with different yield potentials in commercial crops. Results show that ultrasonic and photoelectric sensor fusion associated with the machine learning model has accuracy above 95%. These two sensors and high-resolution images had the best accuracy and precision in detecting and measuring plant spacing at 31 and 47 days after harvest. Spatial and temporal analysis showed that regions with a terrain slope of 5-8% and greater than 8% with curved paths have an inferior number of plants compared to other regions. The local analysis identified that regions with steeper slopes and curved paths have high susceptibility of plant reduction over the years compared to other regions. Finally, yield loss within the sugarcane row occurs with increasing plant spacing. Regions with different yield potentials require different optimum populations to maximize yield. Low-yielding regions require a larger plant population and are more susceptible to lose in yield within the row with increasing plant spacing. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-11-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-14022022-164102/ |
url |
https://www.teses.usp.br/teses/disponiveis/11/11152/tde-14022022-164102/ |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815258115400007680 |