Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocular

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Chiaramonte, Rodolfo Barros
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25032019-100534/
Resumo: Veículos autônomos são importantes para a execução de missões dos mais variados tipos, reduzindo riscos aos seres humanos e executando as missões de uma maneira mais eficiente. Neste contexto existem os veículos aéreos não tripulados que são cada vez mais utilizados em missões de vigilância, reconhecimento, resgate, entre outras. Uma das características destes veículos é realizar as missões de maneira autônoma, sem a intervenção de operadores humanos. Desta forma, é necessário que existam formas de detectar aproximações perigosas com outras aeronaves e objetos que possam causar risco de colisão e, consequentemente a perda de ativos de alto valor ou até mesmo vidas humanas e, posteriormente realizar o desvio necessário. Neste cenário foi proposto o MOSAIC, um sistema de detecção e desvio de obstáculos utilizando visão monocular para veículos aéreos de pequeno porte. Para isto, foi desenvolvido um método de estimativa da posição tridimensional dos obstáculos a partir de imagens monoculares e propostas melhorias em algoritmos de detecção. A validação do sistema foi obtida por meio de experimentos simulados e reais sobre cada módulo e os resultados obtidos foram promissores, apresentando um erro de apenas 9,75% em ambientes sem restrições e distâncias de até 20 metros. Com isto, os resultados se mostram melhores que os demais algoritmos encontrados no estado da arte em que o erro é menor que 10% apenas em ambientes controlados e distâncias de até 5 metros.
id USP_58b8f56bf689f90ca95ab6fb58f49d3e
oai_identifier_str oai:teses.usp.br:tde-25032019-100534
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocularObstacle avoidance for UAVs using monocular visionDetecção e desvio de obstáculosMonocular visionMOSAICMOSAICObstacle avoidanceORCAORCAPosição tridimensionalThreedimensional positionVisão monocularVeículos autônomos são importantes para a execução de missões dos mais variados tipos, reduzindo riscos aos seres humanos e executando as missões de uma maneira mais eficiente. Neste contexto existem os veículos aéreos não tripulados que são cada vez mais utilizados em missões de vigilância, reconhecimento, resgate, entre outras. Uma das características destes veículos é realizar as missões de maneira autônoma, sem a intervenção de operadores humanos. Desta forma, é necessário que existam formas de detectar aproximações perigosas com outras aeronaves e objetos que possam causar risco de colisão e, consequentemente a perda de ativos de alto valor ou até mesmo vidas humanas e, posteriormente realizar o desvio necessário. Neste cenário foi proposto o MOSAIC, um sistema de detecção e desvio de obstáculos utilizando visão monocular para veículos aéreos de pequeno porte. Para isto, foi desenvolvido um método de estimativa da posição tridimensional dos obstáculos a partir de imagens monoculares e propostas melhorias em algoritmos de detecção. A validação do sistema foi obtida por meio de experimentos simulados e reais sobre cada módulo e os resultados obtidos foram promissores, apresentando um erro de apenas 9,75% em ambientes sem restrições e distâncias de até 20 metros. Com isto, os resultados se mostram melhores que os demais algoritmos encontrados no estado da arte em que o erro é menor que 10% apenas em ambientes controlados e distâncias de até 5 metros.Autonomous vehicles can be used for different kinds of missions reducing risks to human life and being more efficient. In this context, unmanned aerial vehicles play an important role on surveillance, recognition and rescue missions, among others. Due to the mission nature, these vehicles need to perform actions without human intervention, which requires that dangerous approximations to others aerial vehicles or objects to be detected and properly avoided. This leads to the creation of MOSAIC, an obstacle avoidance system based on monocular vision designed to meet the requirements of miniature air vehicles. A novel approach to estimate obstacle three-dimensional position based on monocular vision was developed and some improvements in the detection algorithm were proposed. The system validation was obtained through simulated and real experiments in which each module could be validated. Promising results were obtained showing an error under 9.75% in unconstrained environments and distance up to 20 meters. This results were better than the algorithms and approaches described in the state of the art where errors are under 10% only on constrained environments and distance up to 5 meters.Biblioteca Digitais de Teses e Dissertações da USPBranco, Kalinka Regina Lucas Jaquie CasteloOsório, Fernando SantosChiaramonte, Rodolfo Barros2018-11-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-25032019-100534/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-09T23:21:59Zoai:teses.usp.br:tde-25032019-100534Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocular
Obstacle avoidance for UAVs using monocular vision
title Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocular
spellingShingle Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocular
Chiaramonte, Rodolfo Barros
Detecção e desvio de obstáculos
Monocular vision
MOSAIC
MOSAIC
Obstacle avoidance
ORCA
ORCA
Posição tridimensional
Threedimensional position
Visão monocular
title_short Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocular
title_full Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocular
title_fullStr Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocular
title_full_unstemmed Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocular
title_sort Detecção e desvio de obstáculos para veículos aéreos não tripulados usando visão monocular
author Chiaramonte, Rodolfo Barros
author_facet Chiaramonte, Rodolfo Barros
author_role author
dc.contributor.none.fl_str_mv Branco, Kalinka Regina Lucas Jaquie Castelo
Osório, Fernando Santos
dc.contributor.author.fl_str_mv Chiaramonte, Rodolfo Barros
dc.subject.por.fl_str_mv Detecção e desvio de obstáculos
Monocular vision
MOSAIC
MOSAIC
Obstacle avoidance
ORCA
ORCA
Posição tridimensional
Threedimensional position
Visão monocular
topic Detecção e desvio de obstáculos
Monocular vision
MOSAIC
MOSAIC
Obstacle avoidance
ORCA
ORCA
Posição tridimensional
Threedimensional position
Visão monocular
description Veículos autônomos são importantes para a execução de missões dos mais variados tipos, reduzindo riscos aos seres humanos e executando as missões de uma maneira mais eficiente. Neste contexto existem os veículos aéreos não tripulados que são cada vez mais utilizados em missões de vigilância, reconhecimento, resgate, entre outras. Uma das características destes veículos é realizar as missões de maneira autônoma, sem a intervenção de operadores humanos. Desta forma, é necessário que existam formas de detectar aproximações perigosas com outras aeronaves e objetos que possam causar risco de colisão e, consequentemente a perda de ativos de alto valor ou até mesmo vidas humanas e, posteriormente realizar o desvio necessário. Neste cenário foi proposto o MOSAIC, um sistema de detecção e desvio de obstáculos utilizando visão monocular para veículos aéreos de pequeno porte. Para isto, foi desenvolvido um método de estimativa da posição tridimensional dos obstáculos a partir de imagens monoculares e propostas melhorias em algoritmos de detecção. A validação do sistema foi obtida por meio de experimentos simulados e reais sobre cada módulo e os resultados obtidos foram promissores, apresentando um erro de apenas 9,75% em ambientes sem restrições e distâncias de até 20 metros. Com isto, os resultados se mostram melhores que os demais algoritmos encontrados no estado da arte em que o erro é menor que 10% apenas em ambientes controlados e distâncias de até 5 metros.
publishDate 2018
dc.date.none.fl_str_mv 2018-11-21
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25032019-100534/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25032019-100534/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258434942009344