Exportação concluída — 

Real-time optimiztion with persistent parameter adaptation using online parameter estimation.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Matias, José Otávio Assumpção
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3137/tde-17122018-084058/
Resumo: In standard Real-time Optimization (RTO) implementations, the plant needs to be suciently steady in order to update the RTO model parameters reliably. However, this condition is seldom found in practice. Moreover, because the RTO model is only updated when the plant enters a stationary condition, the optimizer is likely to be out of phase with highly perturbed plants. The main contribution of the thesis is the proposal of an alternative RTO approach, called Real-time Optimization with Persistent Adaptation (ROPA), which integrates on-line parameter estimation in the optimization cycle, avoiding the steady-state (SS) detection step. Instead of predicting the SS, the online estimator keeps the model up-to-date with the plant and allows running the economic optimization at any time, even instants after implementing the current RTO decisions. ROPA provides an intermediary solution between static and dynamic optimization schemes. While it approximates the optimal trajectory, ROPA enables the use of well-established static RTO commercial solutions. Furthermore, the new approach is the key for decoupling the model estimation problem in order to achieve plant-wide optimization. Another contribution of the thesis is to provide several case studies in which ROPA is tested and compared with the standard RTO implementation: a Williams-Otto reactor, a Fluid Catalyst Cracking unit and a separation-reaction system. The idea is to illustrate ROPA convergence properties and how the plant-wide optimum is achieved by asynchronously updating the global plant model. The results show that ROPA is able to track the stationary (plant-wide) optimum. In addition, they conrm that the renement of the prediction capacity, by decreasing the time between two sequential optimization, enhances the disturbance detection of the optimization cycle and leads to a better economic performance.
id USP_5ad2a1d6fd927081bf5166bf7addbe4b
oai_identifier_str oai:teses.usp.br:tde-17122018-084058
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Real-time optimiztion with persistent parameter adaptation using online parameter estimation.Otimização em tempo real com atualização persistente de parâmetros usando estimadores de parâmetro em tempo real.Detecção de estado estacionárioEstimação em tempo realOnline estimationOtimização global da plantaPlant-wide optimizationReal-time optimizationSteady-state detectionTempo-real (Otimização)In standard Real-time Optimization (RTO) implementations, the plant needs to be suciently steady in order to update the RTO model parameters reliably. However, this condition is seldom found in practice. Moreover, because the RTO model is only updated when the plant enters a stationary condition, the optimizer is likely to be out of phase with highly perturbed plants. The main contribution of the thesis is the proposal of an alternative RTO approach, called Real-time Optimization with Persistent Adaptation (ROPA), which integrates on-line parameter estimation in the optimization cycle, avoiding the steady-state (SS) detection step. Instead of predicting the SS, the online estimator keeps the model up-to-date with the plant and allows running the economic optimization at any time, even instants after implementing the current RTO decisions. ROPA provides an intermediary solution between static and dynamic optimization schemes. While it approximates the optimal trajectory, ROPA enables the use of well-established static RTO commercial solutions. Furthermore, the new approach is the key for decoupling the model estimation problem in order to achieve plant-wide optimization. Another contribution of the thesis is to provide several case studies in which ROPA is tested and compared with the standard RTO implementation: a Williams-Otto reactor, a Fluid Catalyst Cracking unit and a separation-reaction system. The idea is to illustrate ROPA convergence properties and how the plant-wide optimum is achieved by asynchronously updating the global plant model. The results show that ROPA is able to track the stationary (plant-wide) optimum. In addition, they conrm that the renement of the prediction capacity, by decreasing the time between two sequential optimization, enhances the disturbance detection of the optimization cycle and leads to a better economic performance.Na implementação padrão de otimização em tempo real (RTO, do inglês real-time optimization), a planta deve estar suficientemente estável para que os parâmetros do modelo usado no RTO sejam estimados com precisão. Contudo, esta condição é raramente encontrada na prática. Alám disso, devido ao fato de o modelo usado no RTO ser atualizado somente quando a planta entra em estado estacionário, é provável que o otimizador esteja fora de fase quando implementado em plantas com alta frequência de distúrbios. A principal contribuição desta tese e o desenvolvimento de uma metodologia alternativa de RTO chamada otimização em tempo real com atualização persistente de parâmetros (ROPA, do inglês real-time optimization with persistent adaptation). A nova metodologia integra estimadores em tempo real ao ciclo de otimização, evitando assim a necessidade da etapa de detecção de estado estacionário. Ao invés de identificá-lo, o estimador em tempo real mantém o modelo atualizado com a planta e permite que se execute a otimização econômica em tempos arbitrários, mesmo instantes depois da implementação da decisão ótima calculada anteriormente pelo RTO. ROPA provê uma solução intermediária entre a otimização estática e dinâmica. Ao mesmo tempo que aproxima a trajetória ótima, ela permite o uso de soluções comerciais já estabelecidas de RTO estacionário. Também, a nova metodologia é a chave para o desacoplamento do problema de estimação a fim de se atingir o ótimo global da planta. Uma contribuição adicional da tese é a apresentação de três casos de estudo que testam a ROPA e comparam sua performance à implementação padrão de RTO: um reator Williams-Otto, uma unidade de craqueamento catalítico e um sistema de separação-reação. A ideia principal e ilustrar as propriedades de convergência da nova metodologia e como a atualização assíncrona do modelo global da planta pode ser usada para atingir o ótimo da planta como um todo. Os resultados mostram que a ROPA é capaz de alcançar o ótimo estacionário da planta. Adicionalmente, o refinamento da capacidade de predição através da diminuição do tempo entre duas execuções sequenciais do otimizador melhora a capacidade de detecção de distúrbios do ciclo de otimização assim como a performance econômica.Biblioteca Digitais de Teses e Dissertações da USPRoux, Galo Antonio Carrillo LeMatias, José Otávio Assumpção2018-09-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/3/3137/tde-17122018-084058/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2019-04-09T23:21:59Zoai:teses.usp.br:tde-17122018-084058Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-09T23:21:59Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Real-time optimiztion with persistent parameter adaptation using online parameter estimation.
Otimização em tempo real com atualização persistente de parâmetros usando estimadores de parâmetro em tempo real.
title Real-time optimiztion with persistent parameter adaptation using online parameter estimation.
spellingShingle Real-time optimiztion with persistent parameter adaptation using online parameter estimation.
Matias, José Otávio Assumpção
Detecção de estado estacionário
Estimação em tempo real
Online estimation
Otimização global da planta
Plant-wide optimization
Real-time optimization
Steady-state detection
Tempo-real (Otimização)
title_short Real-time optimiztion with persistent parameter adaptation using online parameter estimation.
title_full Real-time optimiztion with persistent parameter adaptation using online parameter estimation.
title_fullStr Real-time optimiztion with persistent parameter adaptation using online parameter estimation.
title_full_unstemmed Real-time optimiztion with persistent parameter adaptation using online parameter estimation.
title_sort Real-time optimiztion with persistent parameter adaptation using online parameter estimation.
author Matias, José Otávio Assumpção
author_facet Matias, José Otávio Assumpção
author_role author
dc.contributor.none.fl_str_mv Roux, Galo Antonio Carrillo Le
dc.contributor.author.fl_str_mv Matias, José Otávio Assumpção
dc.subject.por.fl_str_mv Detecção de estado estacionário
Estimação em tempo real
Online estimation
Otimização global da planta
Plant-wide optimization
Real-time optimization
Steady-state detection
Tempo-real (Otimização)
topic Detecção de estado estacionário
Estimação em tempo real
Online estimation
Otimização global da planta
Plant-wide optimization
Real-time optimization
Steady-state detection
Tempo-real (Otimização)
description In standard Real-time Optimization (RTO) implementations, the plant needs to be suciently steady in order to update the RTO model parameters reliably. However, this condition is seldom found in practice. Moreover, because the RTO model is only updated when the plant enters a stationary condition, the optimizer is likely to be out of phase with highly perturbed plants. The main contribution of the thesis is the proposal of an alternative RTO approach, called Real-time Optimization with Persistent Adaptation (ROPA), which integrates on-line parameter estimation in the optimization cycle, avoiding the steady-state (SS) detection step. Instead of predicting the SS, the online estimator keeps the model up-to-date with the plant and allows running the economic optimization at any time, even instants after implementing the current RTO decisions. ROPA provides an intermediary solution between static and dynamic optimization schemes. While it approximates the optimal trajectory, ROPA enables the use of well-established static RTO commercial solutions. Furthermore, the new approach is the key for decoupling the model estimation problem in order to achieve plant-wide optimization. Another contribution of the thesis is to provide several case studies in which ROPA is tested and compared with the standard RTO implementation: a Williams-Otto reactor, a Fluid Catalyst Cracking unit and a separation-reaction system. The idea is to illustrate ROPA convergence properties and how the plant-wide optimum is achieved by asynchronously updating the global plant model. The results show that ROPA is able to track the stationary (plant-wide) optimum. In addition, they conrm that the renement of the prediction capacity, by decreasing the time between two sequential optimization, enhances the disturbance detection of the optimization cycle and leads to a better economic performance.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/3/3137/tde-17122018-084058/
url http://www.teses.usp.br/teses/disponiveis/3/3137/tde-17122018-084058/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258204218589184