Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-22032016-214502/ |
Resumo: | Neste trabalho será demonstrada uma versão dos teoremas de Hilbert Liebmann para superfícies em S² x R e H² x R, que são teoremas de existência e unicidade de superfícies completas com curvatura Gaussiana constante nesses ambientes. Como parte da demonstração, a saber a existência, será apresentada uma classificação das superfícies de revolução completas com curvatura Gaussiana constante em torno de um eixo qualquer, em S² x R e em torno de um eixo lorentziano, em H² x R. |
| id |
USP_6a9ca041d4e7af0bf69c8275d3949053 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-22032016-214502 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x RHilbert and Liebmann type theorems for surfaces in S² X R and H² X R.HilbertHilbertLiebmannLiebmannSuperfíciesSurfacesNeste trabalho será demonstrada uma versão dos teoremas de Hilbert Liebmann para superfícies em S² x R e H² x R, que são teoremas de existência e unicidade de superfícies completas com curvatura Gaussiana constante nesses ambientes. Como parte da demonstração, a saber a existência, será apresentada uma classificação das superfícies de revolução completas com curvatura Gaussiana constante em torno de um eixo qualquer, em S² x R e em torno de um eixo lorentziano, em H² x R.In this work it will be proved a version of Hilbert and Liebmann theorems for surfaces in S² X R and H² X R, wich are theorems about existence and uniqueness of complete surfaces with constant Gaussian curvature in those ambients. As part of the proof, namely the existence, it will be presented a classication of complete revolution surfaces with constant Gaussian curvature around any axis in S² X R and around a Lorentzian axis in H² X R.Biblioteca Digitais de Teses e Dissertações da USPChaves, Rosa Maria dos Santos BarreiroInagaki, Marcelo Kodi2016-02-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-22032016-214502/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:17Zoai:teses.usp.br:tde-22032016-214502Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:17Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R Hilbert and Liebmann type theorems for surfaces in S² X R and H² X R. |
| title |
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R |
| spellingShingle |
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R Inagaki, Marcelo Kodi Hilbert Hilbert Liebmann Liebmann Superfícies Surfaces |
| title_short |
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R |
| title_full |
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R |
| title_fullStr |
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R |
| title_full_unstemmed |
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R |
| title_sort |
Teoremas de tipo Hilbert e Liebmann para superfícies em S² x R e H² x R |
| author |
Inagaki, Marcelo Kodi |
| author_facet |
Inagaki, Marcelo Kodi |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Chaves, Rosa Maria dos Santos Barreiro |
| dc.contributor.author.fl_str_mv |
Inagaki, Marcelo Kodi |
| dc.subject.por.fl_str_mv |
Hilbert Hilbert Liebmann Liebmann Superfícies Surfaces |
| topic |
Hilbert Hilbert Liebmann Liebmann Superfícies Surfaces |
| description |
Neste trabalho será demonstrada uma versão dos teoremas de Hilbert Liebmann para superfícies em S² x R e H² x R, que são teoremas de existência e unicidade de superfícies completas com curvatura Gaussiana constante nesses ambientes. Como parte da demonstração, a saber a existência, será apresentada uma classificação das superfícies de revolução completas com curvatura Gaussiana constante em torno de um eixo qualquer, em S² x R e em torno de um eixo lorentziano, em H² x R. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-02-17 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-22032016-214502/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-22032016-214502/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258380293373952 |