Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dados

Detalhes bibliográficos
Ano de defesa: 2010
Autor(a) principal: Ishii, Renato Porfirio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23092010-170110/
Resumo: Aplicações científicas atuais têm produzido volumes de dados cada vez maiores. O processamento, a manipulação e a análise desses dados requerem infraestruturas computacionais de larga escala tais como aglomerados e grades de computadores. Nesse contexto, várias pesquisas visam o aumento de desempenho dessas aplicações por meio da otimização de acesso a dados. Para alcançar tal objetivo, pesquisadores têm utilizado técnicas de replicação, migração, distribuição e paralelismo de dados. No entanto, uma das principais lacunas dessas pesquisas está na falta de emprego de conhecimento sobre aplicações com objetivo de realizar essa otimização. Essa lacuna motivou esta tese que visa empregar comportamento histórico e preditivo de aplicações a fim de otimizar suas operações de leitura e escrita sobre dados distribuídos. Os estudos foram iniciados empregando-se informações previamente monitoradas de aplicações a fim de tomar decisões relativas à replicação, migração e manutenção de consistência. Observou-se, por meio de uma nova heurística, que um conjunto histórico de eventos auxilia a estimar o comportamento futuro de uma aplicação e otimizar seus acessos. Essa primeira abordagem requer ao menos uma execução prévia da aplicação para composição de histórico. Esse requisito pode limitar aplicações reais que apresentam mudanças comportamentais ou que necessitam de longos períodos de execução para completar seu processamento. Para superar essa limitação, uma segunda abordagem foi proposta baseada na predição on-line de eventos comportamentais de aplicações. Essa abordagem não requer a execução prévia da aplicação e permite adaptar estimativas de comportamento futuro em função de alterações adjacentes. A abordagem preditiva analisa propriedades de séries temporais com objetivo de classificar seus processos geradores. Essa classificação aponta modelos que melhor se ajustam ao comportamento das aplicações e que, portanto, permitem predições com maior acurácia. As duas abordagens propostas foram implementadas e avaliadas utilizando o simulador OptorSim, vinculado ao projeto LHC/CERN, amplamente adotado pela comunidade científica. Experimentos constataram que as duas abordagens propostas reduzem o tempo de resposta (ou execução) de aplicações que manipulam grandes volumes de dados distribuídos em aproximadamente 50%
id USP_6d6d53f299129a3103ffc8c358c5bbfe
oai_identifier_str oai:teses.usp.br:tde-23092010-170110
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dadosOptimization input output operations aiming at reduce execution time of distributed applications which handle large amount of dataAnálise de séries temporaisComputação distribuídaData access optimizationDistributed computingDistributed file systemOtimização de acesso a dadosSistemas de arquivos distribuídosTime series analysisAplicações científicas atuais têm produzido volumes de dados cada vez maiores. O processamento, a manipulação e a análise desses dados requerem infraestruturas computacionais de larga escala tais como aglomerados e grades de computadores. Nesse contexto, várias pesquisas visam o aumento de desempenho dessas aplicações por meio da otimização de acesso a dados. Para alcançar tal objetivo, pesquisadores têm utilizado técnicas de replicação, migração, distribuição e paralelismo de dados. No entanto, uma das principais lacunas dessas pesquisas está na falta de emprego de conhecimento sobre aplicações com objetivo de realizar essa otimização. Essa lacuna motivou esta tese que visa empregar comportamento histórico e preditivo de aplicações a fim de otimizar suas operações de leitura e escrita sobre dados distribuídos. Os estudos foram iniciados empregando-se informações previamente monitoradas de aplicações a fim de tomar decisões relativas à replicação, migração e manutenção de consistência. Observou-se, por meio de uma nova heurística, que um conjunto histórico de eventos auxilia a estimar o comportamento futuro de uma aplicação e otimizar seus acessos. Essa primeira abordagem requer ao menos uma execução prévia da aplicação para composição de histórico. Esse requisito pode limitar aplicações reais que apresentam mudanças comportamentais ou que necessitam de longos períodos de execução para completar seu processamento. Para superar essa limitação, uma segunda abordagem foi proposta baseada na predição on-line de eventos comportamentais de aplicações. Essa abordagem não requer a execução prévia da aplicação e permite adaptar estimativas de comportamento futuro em função de alterações adjacentes. A abordagem preditiva analisa propriedades de séries temporais com objetivo de classificar seus processos geradores. Essa classificação aponta modelos que melhor se ajustam ao comportamento das aplicações e que, portanto, permitem predições com maior acurácia. As duas abordagens propostas foram implementadas e avaliadas utilizando o simulador OptorSim, vinculado ao projeto LHC/CERN, amplamente adotado pela comunidade científica. Experimentos constataram que as duas abordagens propostas reduzem o tempo de resposta (ou execução) de aplicações que manipulam grandes volumes de dados distribuídos em aproximadamente 50%Current scientific applications produce large amount of data and handling, processing and analyzing such data require large-scale computing infrastructure such as clusters and grids. In this context, various studies have focused at improving the performance of these applications by optimizing data access. In order to achieve this goal, researchers have employed techniques of replication, migration, distribution and parallelism of data. However, these common approaches do not use knowledge about the applications at hand to perform this optimization. This gap motivated the present thesis, which aims at applying historical and predictive behavior of applications to optimize their reading and writing operations on distributed data. Based on information previously monitored from applications to make decisions regarding replication, migration and consistency of data, a new heuristic was initially proposed. Its evaluation revealed that considering sets of historical events indeed helps to estimate the behavior of future applications and to optimize their access operations. Thus it was embedded into two optimization approaches. The first one requires at least a previous execution for the history composition. This requirement may limit real world applications which present behavioral changes or take very long time to execute. In order to overcome this issue, a second technique was proposed. It performs on-line predictions about the behavior of the applications, mitigating the need of any prior execution. Additionally, this approach considers the future behavior of an application as a function of its underlying changes. This behavior can be modeled as time series. The method works by analyzing the series properties in order to classify their generating processes. This classification indicates models that best fit the applications behavior, allowing more accurate predictions. Experiments using the OptorSim simulator (LHC/CERN project) confirmed that the proposed approaches are able to reduce the response time of applications that handle large amount of distributed data in approximately 50%Biblioteca Digitais de Teses e Dissertações da USPMello, Rodrigo Fernandes deIshii, Renato Porfirio2010-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/55/55134/tde-23092010-170110/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:12Zoai:teses.usp.br:tde-23092010-170110Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:12Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dados
Optimization input output operations aiming at reduce execution time of distributed applications which handle large amount of data
title Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dados
spellingShingle Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dados
Ishii, Renato Porfirio
Análise de séries temporais
Computação distribuída
Data access optimization
Distributed computing
Distributed file system
Otimização de acesso a dados
Sistemas de arquivos distribuídos
Time series analysis
title_short Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dados
title_full Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dados
title_fullStr Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dados
title_full_unstemmed Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dados
title_sort Otimização de operações de entrada e saída visando reduzir o tempo de resposta de aplicações distribuídas que manipulam grandes volumes de dados
author Ishii, Renato Porfirio
author_facet Ishii, Renato Porfirio
author_role author
dc.contributor.none.fl_str_mv Mello, Rodrigo Fernandes de
dc.contributor.author.fl_str_mv Ishii, Renato Porfirio
dc.subject.por.fl_str_mv Análise de séries temporais
Computação distribuída
Data access optimization
Distributed computing
Distributed file system
Otimização de acesso a dados
Sistemas de arquivos distribuídos
Time series analysis
topic Análise de séries temporais
Computação distribuída
Data access optimization
Distributed computing
Distributed file system
Otimização de acesso a dados
Sistemas de arquivos distribuídos
Time series analysis
description Aplicações científicas atuais têm produzido volumes de dados cada vez maiores. O processamento, a manipulação e a análise desses dados requerem infraestruturas computacionais de larga escala tais como aglomerados e grades de computadores. Nesse contexto, várias pesquisas visam o aumento de desempenho dessas aplicações por meio da otimização de acesso a dados. Para alcançar tal objetivo, pesquisadores têm utilizado técnicas de replicação, migração, distribuição e paralelismo de dados. No entanto, uma das principais lacunas dessas pesquisas está na falta de emprego de conhecimento sobre aplicações com objetivo de realizar essa otimização. Essa lacuna motivou esta tese que visa empregar comportamento histórico e preditivo de aplicações a fim de otimizar suas operações de leitura e escrita sobre dados distribuídos. Os estudos foram iniciados empregando-se informações previamente monitoradas de aplicações a fim de tomar decisões relativas à replicação, migração e manutenção de consistência. Observou-se, por meio de uma nova heurística, que um conjunto histórico de eventos auxilia a estimar o comportamento futuro de uma aplicação e otimizar seus acessos. Essa primeira abordagem requer ao menos uma execução prévia da aplicação para composição de histórico. Esse requisito pode limitar aplicações reais que apresentam mudanças comportamentais ou que necessitam de longos períodos de execução para completar seu processamento. Para superar essa limitação, uma segunda abordagem foi proposta baseada na predição on-line de eventos comportamentais de aplicações. Essa abordagem não requer a execução prévia da aplicação e permite adaptar estimativas de comportamento futuro em função de alterações adjacentes. A abordagem preditiva analisa propriedades de séries temporais com objetivo de classificar seus processos geradores. Essa classificação aponta modelos que melhor se ajustam ao comportamento das aplicações e que, portanto, permitem predições com maior acurácia. As duas abordagens propostas foram implementadas e avaliadas utilizando o simulador OptorSim, vinculado ao projeto LHC/CERN, amplamente adotado pela comunidade científica. Experimentos constataram que as duas abordagens propostas reduzem o tempo de resposta (ou execução) de aplicações que manipulam grandes volumes de dados distribuídos em aproximadamente 50%
publishDate 2010
dc.date.none.fl_str_mv 2010-09-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23092010-170110/
url http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23092010-170110/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258475270242304