Operadores de transferência e espaços de Besov

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Marra, Mateus Ribeiro de Souza
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-03052022-103635/
Resumo: O operador de transferência é uma ferramenta muito útil para estudar um sistema dinâmico, além de ter uma relação muito interessante com suas medidas invariantes. Sejam Ι=[0,1] e f: Ι → Ι um sistema dinâmico e Ψ pertencente a um espaço de funções Banach B, definimos o operador de Perron-Fröbenius Lf: B → B da seguinte forma: (LfΨ)(x) = Σf(y)=x Ψ(Y)/∣Df(y)∣. Estudamos a ação do operador de Perron-Fröbenius quando f é um mapa de expansão por partes ou uma contração. No caso particular de uma contração, consideramos a ação do operador nos espaços de Besov B1,1 -S, com 0<s<1. Nosso foco é primeiramente estudar o comportamento do operador para um caso particular de contração, abrindo um horizonte no estudo dos espaços de Besov B1,1 -S. Esses espaços não consistem apenas em funções, a \"função\" delta de Dirac δ0, por exemplo, pertence a B1,1 -S. Por exemplo, considere Pn partições de [0,1] em 2n intervalos de mesmo comprimento. Para cada Q ∈ Pn, Q=[a,b], associamos um átomo aQ = ΙQΙ-s-1 (X[a, (a+b)/2] -X(a+b)/2 ,b]), onde XA é igual a 1 para x ∈ A, e 0 caso contrário. O espaço B1,1 -S, consiste nas distribuições Ψ que podem ser representadas como Ψ = Σn∈N ΣQ∈Pn cQaQ, tal que Σn∈N ΣQ∈Pn∣CQ∣<∞, onde CQ ∈ C, para todos Q ∈ Pn e n ∈ N. Vamos estudar também o operador dual do operador de Perron-Fröbenius de um sistema expansor, e compreender sua dinâmica nos espaços de Besov B1,1 -S.
id USP_7ce35ebc1ae5d8eced47294020b2f33b
oai_identifier_str oai:teses.usp.br:tde-03052022-103635
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Operadores de transferência e espaços de BesovTransfer operators and Besov spacesBesov spacesDynamical systemsErgodic theoryEspaços de BesovOperador de Perron-FröbeniusOperadores de transferênciaPerron-Fröbenius operatorSistemas dinâmicosTeoria ergódicaTransfer operatorsO operador de transferência é uma ferramenta muito útil para estudar um sistema dinâmico, além de ter uma relação muito interessante com suas medidas invariantes. Sejam Ι=[0,1] e f: Ι → Ι um sistema dinâmico e Ψ pertencente a um espaço de funções Banach B, definimos o operador de Perron-Fröbenius Lf: B → B da seguinte forma: (LfΨ)(x) = Σf(y)=x Ψ(Y)/∣Df(y)∣. Estudamos a ação do operador de Perron-Fröbenius quando f é um mapa de expansão por partes ou uma contração. No caso particular de uma contração, consideramos a ação do operador nos espaços de Besov B1,1 -S, com 0<s<1. Nosso foco é primeiramente estudar o comportamento do operador para um caso particular de contração, abrindo um horizonte no estudo dos espaços de Besov B1,1 -S. Esses espaços não consistem apenas em funções, a \"função\" delta de Dirac δ0, por exemplo, pertence a B1,1 -S. Por exemplo, considere Pn partições de [0,1] em 2n intervalos de mesmo comprimento. Para cada Q ∈ Pn, Q=[a,b], associamos um átomo aQ = ΙQΙ-s-1 (X[a, (a+b)/2] -X(a+b)/2 ,b]), onde XA é igual a 1 para x ∈ A, e 0 caso contrário. O espaço B1,1 -S, consiste nas distribuições Ψ que podem ser representadas como Ψ = Σn∈N ΣQ∈Pn cQaQ, tal que Σn∈N ΣQ∈Pn∣CQ∣<∞, onde CQ ∈ C, para todos Q ∈ Pn e n ∈ N. Vamos estudar também o operador dual do operador de Perron-Fröbenius de um sistema expansor, e compreender sua dinâmica nos espaços de Besov B1,1 -S.The transfer operatoris a very useful tool for studying a dynamic system, in addition to having a very interesting relationship with its invariant measures. Let Ι=[0,1] and f: Ι → Ι be a dynamical system and Ψ belonging to a space of Banach functions B, we define the Perron-Frôbenius Operator Lf: B → B as follows: (LfΨ)(x) = Σf(y)=x Ψ(Y)/∣Df(y)∣. We study the action of the Ruelle-Perron-Frôbenius operator when f is a piecewise expansion map or a contraction. In the particular case of a contraction, we consider the action of the operator on the spaces of Besov, B1,1 -S, with 0<s<1. Our focus isfirstly study the behavior of the operator for a particular case of contraction, opening a horizon in the study of Besov spaces B1,1 -S. These spaces do not consist only of functions, the Dirac delta \"function\" δ0, for example, belongs to B1,1 -S. For example, consider Pn partitions of [0,1] into 2n intervals of equal length. For each Q ∈ Pn, Q=[a,b], we associate an atom aQ = ΙQΙ-s-1 (X[a, (a+b)/2] -X(a+b)/2 ,b]), where XA is equal to 1 for x ∈ A, and 0 otherwise. The space B1,1 -S consists of the Ψ distributions that can be represented as Ψ = Σn∈N ΣQ∈Pn cQaQ, such that Σn∈N ΣQ∈Pn∣CQ∣<∞, where CQ ∈ C, for all Q ∈ Pn and n ∈ N. We will also study the dual operator of the PerronFrôbenius operator of an expanding system, and understand its dynamics in the Besov spaces B1,1 -SBiblioteca Digitais de Teses e Dissertações da USPBrandão, Daniel SmaniaMarra, Mateus Ribeiro de Souza2022-03-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55135/tde-03052022-103635/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2022-12-06T18:43:37Zoai:teses.usp.br:tde-03052022-103635Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212022-12-06T18:43:37Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Operadores de transferência e espaços de Besov
Transfer operators and Besov spaces
title Operadores de transferência e espaços de Besov
spellingShingle Operadores de transferência e espaços de Besov
Marra, Mateus Ribeiro de Souza
Besov spaces
Dynamical systems
Ergodic theory
Espaços de Besov
Operador de Perron-Fröbenius
Operadores de transferência
Perron-Fröbenius operator
Sistemas dinâmicos
Teoria ergódica
Transfer operators
title_short Operadores de transferência e espaços de Besov
title_full Operadores de transferência e espaços de Besov
title_fullStr Operadores de transferência e espaços de Besov
title_full_unstemmed Operadores de transferência e espaços de Besov
title_sort Operadores de transferência e espaços de Besov
author Marra, Mateus Ribeiro de Souza
author_facet Marra, Mateus Ribeiro de Souza
author_role author
dc.contributor.none.fl_str_mv Brandão, Daniel Smania
dc.contributor.author.fl_str_mv Marra, Mateus Ribeiro de Souza
dc.subject.por.fl_str_mv Besov spaces
Dynamical systems
Ergodic theory
Espaços de Besov
Operador de Perron-Fröbenius
Operadores de transferência
Perron-Fröbenius operator
Sistemas dinâmicos
Teoria ergódica
Transfer operators
topic Besov spaces
Dynamical systems
Ergodic theory
Espaços de Besov
Operador de Perron-Fröbenius
Operadores de transferência
Perron-Fröbenius operator
Sistemas dinâmicos
Teoria ergódica
Transfer operators
description O operador de transferência é uma ferramenta muito útil para estudar um sistema dinâmico, além de ter uma relação muito interessante com suas medidas invariantes. Sejam Ι=[0,1] e f: Ι → Ι um sistema dinâmico e Ψ pertencente a um espaço de funções Banach B, definimos o operador de Perron-Fröbenius Lf: B → B da seguinte forma: (LfΨ)(x) = Σf(y)=x Ψ(Y)/∣Df(y)∣. Estudamos a ação do operador de Perron-Fröbenius quando f é um mapa de expansão por partes ou uma contração. No caso particular de uma contração, consideramos a ação do operador nos espaços de Besov B1,1 -S, com 0<s<1. Nosso foco é primeiramente estudar o comportamento do operador para um caso particular de contração, abrindo um horizonte no estudo dos espaços de Besov B1,1 -S. Esses espaços não consistem apenas em funções, a \"função\" delta de Dirac δ0, por exemplo, pertence a B1,1 -S. Por exemplo, considere Pn partições de [0,1] em 2n intervalos de mesmo comprimento. Para cada Q ∈ Pn, Q=[a,b], associamos um átomo aQ = ΙQΙ-s-1 (X[a, (a+b)/2] -X(a+b)/2 ,b]), onde XA é igual a 1 para x ∈ A, e 0 caso contrário. O espaço B1,1 -S, consiste nas distribuições Ψ que podem ser representadas como Ψ = Σn∈N ΣQ∈Pn cQaQ, tal que Σn∈N ΣQ∈Pn∣CQ∣<∞, onde CQ ∈ C, para todos Q ∈ Pn e n ∈ N. Vamos estudar também o operador dual do operador de Perron-Fröbenius de um sistema expansor, e compreender sua dinâmica nos espaços de Besov B1,1 -S.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55135/tde-03052022-103635/
url https://www.teses.usp.br/teses/disponiveis/55/55135/tde-03052022-103635/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257833102376960