External illumination photonic therapies for pneumonia: experimental models and light propagation simulation

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Tovar, Johan Sebastian Diaz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/76/76134/tde-28112024-090333/
Resumo: Lower respiratory infections, pneumonia, remains a significant global health challenge, exacerbated by rising antimicrobial resistance, which limits the effectiveness of traditional antibiotic treatments. Antimicrobial photodynamic therapy (aPDT) offers a promising alternative, using light to activate photosensitizers that generate reactive oxygen species, killing microbial cells. This study explores the use of 808 nm wavelength light to penetrate the thoracic wall and activate indocyanine green (ICG) for a photodynamic response in the lungs. A custommade laser panel, emitting light at an irradiance of 78 ± 10 mW/cm2 and centered at 808 nm, was developed for this purpose. Monte Carlo simulations were performed to model photon migration through thoracic wall tissues, identifying the skin and subcutaneous fat as the primary absorbers. In ex vivo experiments using a pig thoracic cage, 3% to 5% of the emitted irradiance were transmitted through the thoracic wall. Despite this low transmission, a 99.9% reduction of Streptococcus pneumoniae was achieved after 42.6 minutes of irradiation, demonstrating the potential efficacy of aPDT. In vivo experiments on a 34 kg pig further supported these findings, with 15% of the emitted irradiance reaching the lung tissue. These results suggest that external thoracic illumination with NIR light can achieve therapeutic fluence levels necessary for lung photobiomodulation and photodynamic inactivation. Complementary Monte Carlo simulations using 3D anatomical models derived from human CT scans evaluated light dosimetry across different lung conditions, including pneumonia and COVID-19. These simulations revealed significant variations in energy deposition and fluence distribution within lung lobes under different pathological conditions and light source configurations. In summary, this study highlights the potential of external NIR light to effectively penetrate the thoracic wall and achieve photodynamic inactivation within the lungs. The combination of experimental data and detailed anatomical modeling is crucial for optimizing light-based therapies for respiratory diseases.
id USP_86490cd023a0d3e4d7296e82e9b7cd8b
oai_identifier_str oai:teses.usp.br:tde-28112024-090333
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling External illumination photonic therapies for pneumonia: experimental models and light propagation simulationTerapias fotônicas de iluminação externa para pneumonia: modelos experimentais e simulação de propagação de luzAntimicrobial photodynamic therapyDosimetria pulmonarIndocyanine greenLung dosimetryLuz infravermelha próxima (NIR)Monte Carlo simulationsNear-infrared (NIR) lightSimulações de Monte CarloTerapia fotodinâmica antimicrobianaVerde de indocianinaLower respiratory infections, pneumonia, remains a significant global health challenge, exacerbated by rising antimicrobial resistance, which limits the effectiveness of traditional antibiotic treatments. Antimicrobial photodynamic therapy (aPDT) offers a promising alternative, using light to activate photosensitizers that generate reactive oxygen species, killing microbial cells. This study explores the use of 808 nm wavelength light to penetrate the thoracic wall and activate indocyanine green (ICG) for a photodynamic response in the lungs. A custommade laser panel, emitting light at an irradiance of 78 ± 10 mW/cm2 and centered at 808 nm, was developed for this purpose. Monte Carlo simulations were performed to model photon migration through thoracic wall tissues, identifying the skin and subcutaneous fat as the primary absorbers. In ex vivo experiments using a pig thoracic cage, 3% to 5% of the emitted irradiance were transmitted through the thoracic wall. Despite this low transmission, a 99.9% reduction of Streptococcus pneumoniae was achieved after 42.6 minutes of irradiation, demonstrating the potential efficacy of aPDT. In vivo experiments on a 34 kg pig further supported these findings, with 15% of the emitted irradiance reaching the lung tissue. These results suggest that external thoracic illumination with NIR light can achieve therapeutic fluence levels necessary for lung photobiomodulation and photodynamic inactivation. Complementary Monte Carlo simulations using 3D anatomical models derived from human CT scans evaluated light dosimetry across different lung conditions, including pneumonia and COVID-19. These simulations revealed significant variations in energy deposition and fluence distribution within lung lobes under different pathological conditions and light source configurations. In summary, this study highlights the potential of external NIR light to effectively penetrate the thoracic wall and achieve photodynamic inactivation within the lungs. The combination of experimental data and detailed anatomical modeling is crucial for optimizing light-based therapies for respiratory diseases.As infecções respiratórias inferiores, pneumonia, continuam sendo um desafio global significativo para a saúde, exacerbado pela crescente resistência antimicrobiana, que limita a eficácia dos tratamentos antibióticos tradicionais. A terapia fotodinâmica antimicrobiana (TFDa) oferece uma alternativa promissora, usando luz para ativar fotossensibilizadores que geram espécies reativas de oxigênio, matando células microbianas. Este estudo explora o uso de luz de comprimento de onda de 808 nm para penetrar na parede torácica e ativar o indocianina verde (ICV) para uma resposta fotodinâmica nos pulmões. Um painel de laser personalizado, emitindo luz a uma irradiância de 78 ± 10 mW/cm2 e centralizado em 808 nm, foi desenvolvido para essa finalidade. Simulações de Monte Carlo foram realizadas para modelar a migração de fótons através dos tecidos da parede torácica, identificando a pele e a gordura subcutânea como os absorvedores primários. Em experimentos ex vivo usando uma caixa torácica de porco, 3% a 5% da irradiância emitida transmitida através da parede torácica. Apesar dessa baixa transmissão, uma redução de 99,9% de Streptococcus pneumoniae foi alcançada após 42,6 minutos de irradiação, demonstrando a eficácia potencial da aPDT. Experimentos in vivo em um porco de 34 kg apoiaram ainda mais essas descobertas, com 15% da irradiância emitida atingindo o tecido pulmonar. Esses resultados sugerem que a iluminação torácica externa com luz NIR pode atingir níveis de fluência terapêutica necessários para fotobiomodulação pulmonar e inativação fotodinâmica. Simulações complementares de Monte Carlo usando modelos anatômicos 3D derivados de tomografias computadorizadas humanas avaliaram a dosimetria de luz em diferentes condições pulmonares, incluindo pneumonia e COVID-19. Essas simulações revelaram variações significativas na deposição de energia e distribuição de fluência dentro dos lobos pulmonares sob diferentes condições patológicas e configurações de fonte de luz. Em resumo, este estudo destaca o potencial da luz NIR externa para penetrar efetivamente na parede torácica e atingir a inativação fotodinâmica dentro dos pulmões. A combinação de dados experimentais e modelagem anatômica detalhada é crucial para otimizar terapias baseadas em luz para doenças respiratórias.Biblioteca Digitais de Teses e Dissertações da USPKurachi, CristinaTovar, Johan Sebastian Diaz2024-10-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-28112024-090333/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-11-28T17:00:02Zoai:teses.usp.br:tde-28112024-090333Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-11-28T17:00:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv External illumination photonic therapies for pneumonia: experimental models and light propagation simulation
Terapias fotônicas de iluminação externa para pneumonia: modelos experimentais e simulação de propagação de luz
title External illumination photonic therapies for pneumonia: experimental models and light propagation simulation
spellingShingle External illumination photonic therapies for pneumonia: experimental models and light propagation simulation
Tovar, Johan Sebastian Diaz
Antimicrobial photodynamic therapy
Dosimetria pulmonar
Indocyanine green
Lung dosimetry
Luz infravermelha próxima (NIR)
Monte Carlo simulations
Near-infrared (NIR) light
Simulações de Monte Carlo
Terapia fotodinâmica antimicrobiana
Verde de indocianina
title_short External illumination photonic therapies for pneumonia: experimental models and light propagation simulation
title_full External illumination photonic therapies for pneumonia: experimental models and light propagation simulation
title_fullStr External illumination photonic therapies for pneumonia: experimental models and light propagation simulation
title_full_unstemmed External illumination photonic therapies for pneumonia: experimental models and light propagation simulation
title_sort External illumination photonic therapies for pneumonia: experimental models and light propagation simulation
author Tovar, Johan Sebastian Diaz
author_facet Tovar, Johan Sebastian Diaz
author_role author
dc.contributor.none.fl_str_mv Kurachi, Cristina
dc.contributor.author.fl_str_mv Tovar, Johan Sebastian Diaz
dc.subject.por.fl_str_mv Antimicrobial photodynamic therapy
Dosimetria pulmonar
Indocyanine green
Lung dosimetry
Luz infravermelha próxima (NIR)
Monte Carlo simulations
Near-infrared (NIR) light
Simulações de Monte Carlo
Terapia fotodinâmica antimicrobiana
Verde de indocianina
topic Antimicrobial photodynamic therapy
Dosimetria pulmonar
Indocyanine green
Lung dosimetry
Luz infravermelha próxima (NIR)
Monte Carlo simulations
Near-infrared (NIR) light
Simulações de Monte Carlo
Terapia fotodinâmica antimicrobiana
Verde de indocianina
description Lower respiratory infections, pneumonia, remains a significant global health challenge, exacerbated by rising antimicrobial resistance, which limits the effectiveness of traditional antibiotic treatments. Antimicrobial photodynamic therapy (aPDT) offers a promising alternative, using light to activate photosensitizers that generate reactive oxygen species, killing microbial cells. This study explores the use of 808 nm wavelength light to penetrate the thoracic wall and activate indocyanine green (ICG) for a photodynamic response in the lungs. A custommade laser panel, emitting light at an irradiance of 78 ± 10 mW/cm2 and centered at 808 nm, was developed for this purpose. Monte Carlo simulations were performed to model photon migration through thoracic wall tissues, identifying the skin and subcutaneous fat as the primary absorbers. In ex vivo experiments using a pig thoracic cage, 3% to 5% of the emitted irradiance were transmitted through the thoracic wall. Despite this low transmission, a 99.9% reduction of Streptococcus pneumoniae was achieved after 42.6 minutes of irradiation, demonstrating the potential efficacy of aPDT. In vivo experiments on a 34 kg pig further supported these findings, with 15% of the emitted irradiance reaching the lung tissue. These results suggest that external thoracic illumination with NIR light can achieve therapeutic fluence levels necessary for lung photobiomodulation and photodynamic inactivation. Complementary Monte Carlo simulations using 3D anatomical models derived from human CT scans evaluated light dosimetry across different lung conditions, including pneumonia and COVID-19. These simulations revealed significant variations in energy deposition and fluence distribution within lung lobes under different pathological conditions and light source configurations. In summary, this study highlights the potential of external NIR light to effectively penetrate the thoracic wall and achieve photodynamic inactivation within the lungs. The combination of experimental data and detailed anatomical modeling is crucial for optimizing light-based therapies for respiratory diseases.
publishDate 2024
dc.date.none.fl_str_mv 2024-10-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76134/tde-28112024-090333/
url https://www.teses.usp.br/teses/disponiveis/76/76134/tde-28112024-090333/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818598509046136832