External illumination photonic therapies for pneumonia: experimental models and light propagation simulation
| Ano de defesa: | 2024 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/76/76134/tde-28112024-090333/ |
Resumo: | Lower respiratory infections, pneumonia, remains a significant global health challenge, exacerbated by rising antimicrobial resistance, which limits the effectiveness of traditional antibiotic treatments. Antimicrobial photodynamic therapy (aPDT) offers a promising alternative, using light to activate photosensitizers that generate reactive oxygen species, killing microbial cells. This study explores the use of 808 nm wavelength light to penetrate the thoracic wall and activate indocyanine green (ICG) for a photodynamic response in the lungs. A custommade laser panel, emitting light at an irradiance of 78 ± 10 mW/cm2 and centered at 808 nm, was developed for this purpose. Monte Carlo simulations were performed to model photon migration through thoracic wall tissues, identifying the skin and subcutaneous fat as the primary absorbers. In ex vivo experiments using a pig thoracic cage, 3% to 5% of the emitted irradiance were transmitted through the thoracic wall. Despite this low transmission, a 99.9% reduction of Streptococcus pneumoniae was achieved after 42.6 minutes of irradiation, demonstrating the potential efficacy of aPDT. In vivo experiments on a 34 kg pig further supported these findings, with 15% of the emitted irradiance reaching the lung tissue. These results suggest that external thoracic illumination with NIR light can achieve therapeutic fluence levels necessary for lung photobiomodulation and photodynamic inactivation. Complementary Monte Carlo simulations using 3D anatomical models derived from human CT scans evaluated light dosimetry across different lung conditions, including pneumonia and COVID-19. These simulations revealed significant variations in energy deposition and fluence distribution within lung lobes under different pathological conditions and light source configurations. In summary, this study highlights the potential of external NIR light to effectively penetrate the thoracic wall and achieve photodynamic inactivation within the lungs. The combination of experimental data and detailed anatomical modeling is crucial for optimizing light-based therapies for respiratory diseases. |
| id |
USP_86490cd023a0d3e4d7296e82e9b7cd8b |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-28112024-090333 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
External illumination photonic therapies for pneumonia: experimental models and light propagation simulationTerapias fotônicas de iluminação externa para pneumonia: modelos experimentais e simulação de propagação de luzAntimicrobial photodynamic therapyDosimetria pulmonarIndocyanine greenLung dosimetryLuz infravermelha próxima (NIR)Monte Carlo simulationsNear-infrared (NIR) lightSimulações de Monte CarloTerapia fotodinâmica antimicrobianaVerde de indocianinaLower respiratory infections, pneumonia, remains a significant global health challenge, exacerbated by rising antimicrobial resistance, which limits the effectiveness of traditional antibiotic treatments. Antimicrobial photodynamic therapy (aPDT) offers a promising alternative, using light to activate photosensitizers that generate reactive oxygen species, killing microbial cells. This study explores the use of 808 nm wavelength light to penetrate the thoracic wall and activate indocyanine green (ICG) for a photodynamic response in the lungs. A custommade laser panel, emitting light at an irradiance of 78 ± 10 mW/cm2 and centered at 808 nm, was developed for this purpose. Monte Carlo simulations were performed to model photon migration through thoracic wall tissues, identifying the skin and subcutaneous fat as the primary absorbers. In ex vivo experiments using a pig thoracic cage, 3% to 5% of the emitted irradiance were transmitted through the thoracic wall. Despite this low transmission, a 99.9% reduction of Streptococcus pneumoniae was achieved after 42.6 minutes of irradiation, demonstrating the potential efficacy of aPDT. In vivo experiments on a 34 kg pig further supported these findings, with 15% of the emitted irradiance reaching the lung tissue. These results suggest that external thoracic illumination with NIR light can achieve therapeutic fluence levels necessary for lung photobiomodulation and photodynamic inactivation. Complementary Monte Carlo simulations using 3D anatomical models derived from human CT scans evaluated light dosimetry across different lung conditions, including pneumonia and COVID-19. These simulations revealed significant variations in energy deposition and fluence distribution within lung lobes under different pathological conditions and light source configurations. In summary, this study highlights the potential of external NIR light to effectively penetrate the thoracic wall and achieve photodynamic inactivation within the lungs. The combination of experimental data and detailed anatomical modeling is crucial for optimizing light-based therapies for respiratory diseases.As infecções respiratórias inferiores, pneumonia, continuam sendo um desafio global significativo para a saúde, exacerbado pela crescente resistência antimicrobiana, que limita a eficácia dos tratamentos antibióticos tradicionais. A terapia fotodinâmica antimicrobiana (TFDa) oferece uma alternativa promissora, usando luz para ativar fotossensibilizadores que geram espécies reativas de oxigênio, matando células microbianas. Este estudo explora o uso de luz de comprimento de onda de 808 nm para penetrar na parede torácica e ativar o indocianina verde (ICV) para uma resposta fotodinâmica nos pulmões. Um painel de laser personalizado, emitindo luz a uma irradiância de 78 ± 10 mW/cm2 e centralizado em 808 nm, foi desenvolvido para essa finalidade. Simulações de Monte Carlo foram realizadas para modelar a migração de fótons através dos tecidos da parede torácica, identificando a pele e a gordura subcutânea como os absorvedores primários. Em experimentos ex vivo usando uma caixa torácica de porco, 3% a 5% da irradiância emitida transmitida através da parede torácica. Apesar dessa baixa transmissão, uma redução de 99,9% de Streptococcus pneumoniae foi alcançada após 42,6 minutos de irradiação, demonstrando a eficácia potencial da aPDT. Experimentos in vivo em um porco de 34 kg apoiaram ainda mais essas descobertas, com 15% da irradiância emitida atingindo o tecido pulmonar. Esses resultados sugerem que a iluminação torácica externa com luz NIR pode atingir níveis de fluência terapêutica necessários para fotobiomodulação pulmonar e inativação fotodinâmica. Simulações complementares de Monte Carlo usando modelos anatômicos 3D derivados de tomografias computadorizadas humanas avaliaram a dosimetria de luz em diferentes condições pulmonares, incluindo pneumonia e COVID-19. Essas simulações revelaram variações significativas na deposição de energia e distribuição de fluência dentro dos lobos pulmonares sob diferentes condições patológicas e configurações de fonte de luz. Em resumo, este estudo destaca o potencial da luz NIR externa para penetrar efetivamente na parede torácica e atingir a inativação fotodinâmica dentro dos pulmões. A combinação de dados experimentais e modelagem anatômica detalhada é crucial para otimizar terapias baseadas em luz para doenças respiratórias.Biblioteca Digitais de Teses e Dissertações da USPKurachi, CristinaTovar, Johan Sebastian Diaz2024-10-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-28112024-090333/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-11-28T17:00:02Zoai:teses.usp.br:tde-28112024-090333Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-11-28T17:00:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
External illumination photonic therapies for pneumonia: experimental models and light propagation simulation Terapias fotônicas de iluminação externa para pneumonia: modelos experimentais e simulação de propagação de luz |
| title |
External illumination photonic therapies for pneumonia: experimental models and light propagation simulation |
| spellingShingle |
External illumination photonic therapies for pneumonia: experimental models and light propagation simulation Tovar, Johan Sebastian Diaz Antimicrobial photodynamic therapy Dosimetria pulmonar Indocyanine green Lung dosimetry Luz infravermelha próxima (NIR) Monte Carlo simulations Near-infrared (NIR) light Simulações de Monte Carlo Terapia fotodinâmica antimicrobiana Verde de indocianina |
| title_short |
External illumination photonic therapies for pneumonia: experimental models and light propagation simulation |
| title_full |
External illumination photonic therapies for pneumonia: experimental models and light propagation simulation |
| title_fullStr |
External illumination photonic therapies for pneumonia: experimental models and light propagation simulation |
| title_full_unstemmed |
External illumination photonic therapies for pneumonia: experimental models and light propagation simulation |
| title_sort |
External illumination photonic therapies for pneumonia: experimental models and light propagation simulation |
| author |
Tovar, Johan Sebastian Diaz |
| author_facet |
Tovar, Johan Sebastian Diaz |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Kurachi, Cristina |
| dc.contributor.author.fl_str_mv |
Tovar, Johan Sebastian Diaz |
| dc.subject.por.fl_str_mv |
Antimicrobial photodynamic therapy Dosimetria pulmonar Indocyanine green Lung dosimetry Luz infravermelha próxima (NIR) Monte Carlo simulations Near-infrared (NIR) light Simulações de Monte Carlo Terapia fotodinâmica antimicrobiana Verde de indocianina |
| topic |
Antimicrobial photodynamic therapy Dosimetria pulmonar Indocyanine green Lung dosimetry Luz infravermelha próxima (NIR) Monte Carlo simulations Near-infrared (NIR) light Simulações de Monte Carlo Terapia fotodinâmica antimicrobiana Verde de indocianina |
| description |
Lower respiratory infections, pneumonia, remains a significant global health challenge, exacerbated by rising antimicrobial resistance, which limits the effectiveness of traditional antibiotic treatments. Antimicrobial photodynamic therapy (aPDT) offers a promising alternative, using light to activate photosensitizers that generate reactive oxygen species, killing microbial cells. This study explores the use of 808 nm wavelength light to penetrate the thoracic wall and activate indocyanine green (ICG) for a photodynamic response in the lungs. A custommade laser panel, emitting light at an irradiance of 78 ± 10 mW/cm2 and centered at 808 nm, was developed for this purpose. Monte Carlo simulations were performed to model photon migration through thoracic wall tissues, identifying the skin and subcutaneous fat as the primary absorbers. In ex vivo experiments using a pig thoracic cage, 3% to 5% of the emitted irradiance were transmitted through the thoracic wall. Despite this low transmission, a 99.9% reduction of Streptococcus pneumoniae was achieved after 42.6 minutes of irradiation, demonstrating the potential efficacy of aPDT. In vivo experiments on a 34 kg pig further supported these findings, with 15% of the emitted irradiance reaching the lung tissue. These results suggest that external thoracic illumination with NIR light can achieve therapeutic fluence levels necessary for lung photobiomodulation and photodynamic inactivation. Complementary Monte Carlo simulations using 3D anatomical models derived from human CT scans evaluated light dosimetry across different lung conditions, including pneumonia and COVID-19. These simulations revealed significant variations in energy deposition and fluence distribution within lung lobes under different pathological conditions and light source configurations. In summary, this study highlights the potential of external NIR light to effectively penetrate the thoracic wall and achieve photodynamic inactivation within the lungs. The combination of experimental data and detailed anatomical modeling is crucial for optimizing light-based therapies for respiratory diseases. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-10-04 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-28112024-090333/ |
| url |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-28112024-090333/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818598509046136832 |