Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumonia
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/76/76134/tde-13102020-103630/ |
Resumo: | Pneumonia is one the main causes of death worldwide, and it is mainly due to the increase of antibiotic microbiological resistance. Photodynamic therapy (PDT), which uses the combination of light and a photosensitizer (PS) drug to cause damages in biological target, has emerged as a non-invasive clinical approach for different kind of treatment to which development of resistance is reported to be unlikely. Our research group has demonstrated the efficient of photodynamic inactivation (PDI) of Streptococcus pneumoniae in vitro and in vivo using Indocyanine green as a PS. In this work was investigated the efficient of generation of reactive oxygen species (ROS) of Indocyanine green (ICG) by comparing two wavelengths, 780 and 808 nm. As well as the efficient of 808 nm wavelength to pass through structures with similar optical properties of skin and activate ICG by extracorporeal illumination to generate PDI in Streptococcus pneumoniae. For the first part of the work, photobleaching experiments were performed at 780 and 808 nm, different oxygen concentrations and solvents. Sensitizer bleaching was recorded by absorption spectra and then analysed by using the PDT bleaching macroscopic model to extract important parameters of ICG. It was found higher photobleaching rates when degradating with 808 nm than 780 nm wavelength, and deactivation of ICG molecule was observed to be due to type I and type II mechanisms of PDT. For second part, the PDI efficiency was validated when incident light is attenuated by phantom barriers. Characterization of the panel of 200 laser prototype was performed by emission wavelength, irradiance statibility and temperature increase. The optical transmission attenuated light was detected as phantom barriers increased. On the other hand, Monte Carlo simulation were performed in a computerized model phantom of the thoracic cage to . Finally, for the PDI experiments it was found that even with a barrier thickness of 37.10 mm a energy dose of 197.96 J/cm2 at surface of the laser panel/phantom interface is needed to achieve a total reduction of the bacterial burden. In conclusion, ICG in combination with extracorporeal illumination at 808 nm wavelength demonstrate a high efficient for treatment of lung infections as pneumonia. |
| id |
USP_d172de7ed3085e971b0b585a488d895b |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-13102020-103630 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumoniaEstudo dos princípios envolvidos na ativação da indocianina verde pela radiação infravermelha na inativação fotodinâmica da pneumoniaInativação fotodinâmicaIndocianina verdeIndocyanine greenMonte CarloMonte CarloPhantomPhantomPhotodynamic inactivationPneumoniaPneumoniaPneumonia is one the main causes of death worldwide, and it is mainly due to the increase of antibiotic microbiological resistance. Photodynamic therapy (PDT), which uses the combination of light and a photosensitizer (PS) drug to cause damages in biological target, has emerged as a non-invasive clinical approach for different kind of treatment to which development of resistance is reported to be unlikely. Our research group has demonstrated the efficient of photodynamic inactivation (PDI) of Streptococcus pneumoniae in vitro and in vivo using Indocyanine green as a PS. In this work was investigated the efficient of generation of reactive oxygen species (ROS) of Indocyanine green (ICG) by comparing two wavelengths, 780 and 808 nm. As well as the efficient of 808 nm wavelength to pass through structures with similar optical properties of skin and activate ICG by extracorporeal illumination to generate PDI in Streptococcus pneumoniae. For the first part of the work, photobleaching experiments were performed at 780 and 808 nm, different oxygen concentrations and solvents. Sensitizer bleaching was recorded by absorption spectra and then analysed by using the PDT bleaching macroscopic model to extract important parameters of ICG. It was found higher photobleaching rates when degradating with 808 nm than 780 nm wavelength, and deactivation of ICG molecule was observed to be due to type I and type II mechanisms of PDT. For second part, the PDI efficiency was validated when incident light is attenuated by phantom barriers. Characterization of the panel of 200 laser prototype was performed by emission wavelength, irradiance statibility and temperature increase. The optical transmission attenuated light was detected as phantom barriers increased. On the other hand, Monte Carlo simulation were performed in a computerized model phantom of the thoracic cage to . Finally, for the PDI experiments it was found that even with a barrier thickness of 37.10 mm a energy dose of 197.96 J/cm2 at surface of the laser panel/phantom interface is needed to achieve a total reduction of the bacterial burden. In conclusion, ICG in combination with extracorporeal illumination at 808 nm wavelength demonstrate a high efficient for treatment of lung infections as pneumonia.A pneumonia é uma das principais causas de morte em todo o mundo, principalmente devido ao aumento da resistência microbiológica a antibióticos. A terapia fotodinâmica (TFD), que usa a combinação de luz e um medicamento fotossensibilizador (FS) para causar danos no alvo biológico, emergiu como uma abordagem clínica não invasiva para diferentes tipos de tratamento aos quais é relatado que o desenvolvimento de resistência é improvável. Nosso grupo de pesquisa demonstrou a eficiência da inativação fotodinâmica (IFD) de Streptococcus pneumoniae in vitro e in vivo usando verde de indocianina como FS. Neste trabalho, investigou-se a eficiência da geração de espécies reativas de oxigênio (ERO) da indocianina verde (ICV), comparando-se dois comprimentos de onda, 780 e 808 nm. Assim como a eficiencia do comprimento de onda de 808 nm para atravessar estruturas com propriedades ópticas semelhantes da pele e ativar o ICV por iluminação extracorpórea para gerar IFC em Streptococcus pneumoniae. Para a primeira parte do trabalho, foram realizadas medidas de fotodegradação a 780 e 808 nm, em diferentes concentrações de oxigênio e solventes. A fotodegradação do sensibilizador foi registrado por espectros de absorção e, em seguida, analisado usando o modelo macroscópico de branqueamento TFD para extrair parâmetros importantes do ICV. Verificou-se maiores taxas de fotodegradação ao se degradar com comprimento de onda de 808 nm a 780 nm, e a desativação da molécula de ICG foi devida aos mecanismos de PDT tipo I e tipo II. Para a segunda parte, a eficiência do IFD foi validada quando a luz incidente é atenuada por barreiras fantasmas. A caracterização do protótipo de iluminação de 200 lasers foi realizada pelo comprimento de onda de emissão, estabilidade de irradiância e aumento de temperatura. A luz atenuada da transmissão óptica foi detectada à medida que as barreiras fantasmas aumentavam. Por outro lado, a simulação de Monte Carlo foi realizada em um modelo de phantom computadorizado da caixa torácica. Finalmente, para as experiências IFD, verificou-se que, mesmo com uma espessura de barreira de 37,10 mm, é necessária uma dose de energia de 197,96 J/cm2 na superfície da interface painel laser/phantom para obter uma redução total da carga bacteriana. Em conclusão, o ICV em combinação com a iluminação extracorpórea no comprimento de onda de 808 nm demonstram alta eficiência no tratamento de infecções pulmonares como pneumonia.Biblioteca Digitais de Teses e Dissertações da USPKurachi, CristinaTovar, Johan Sebastian Diaz2020-08-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76134/tde-13102020-103630/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-08-22T23:38:03Zoai:teses.usp.br:tde-13102020-103630Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-08-22T23:38:03Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumonia Estudo dos princípios envolvidos na ativação da indocianina verde pela radiação infravermelha na inativação fotodinâmica da pneumonia |
| title |
Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumonia |
| spellingShingle |
Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumonia Tovar, Johan Sebastian Diaz Inativação fotodinâmica Indocianina verde Indocyanine green Monte Carlo Monte Carlo Phantom Phantom Photodynamic inactivation Pneumonia Pneumonia |
| title_short |
Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumonia |
| title_full |
Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumonia |
| title_fullStr |
Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumonia |
| title_full_unstemmed |
Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumonia |
| title_sort |
Study of the principles involved in the activation of indocyanine green by infrared radiation in the photodynamic inactivation of pneumonia |
| author |
Tovar, Johan Sebastian Diaz |
| author_facet |
Tovar, Johan Sebastian Diaz |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Kurachi, Cristina |
| dc.contributor.author.fl_str_mv |
Tovar, Johan Sebastian Diaz |
| dc.subject.por.fl_str_mv |
Inativação fotodinâmica Indocianina verde Indocyanine green Monte Carlo Monte Carlo Phantom Phantom Photodynamic inactivation Pneumonia Pneumonia |
| topic |
Inativação fotodinâmica Indocianina verde Indocyanine green Monte Carlo Monte Carlo Phantom Phantom Photodynamic inactivation Pneumonia Pneumonia |
| description |
Pneumonia is one the main causes of death worldwide, and it is mainly due to the increase of antibiotic microbiological resistance. Photodynamic therapy (PDT), which uses the combination of light and a photosensitizer (PS) drug to cause damages in biological target, has emerged as a non-invasive clinical approach for different kind of treatment to which development of resistance is reported to be unlikely. Our research group has demonstrated the efficient of photodynamic inactivation (PDI) of Streptococcus pneumoniae in vitro and in vivo using Indocyanine green as a PS. In this work was investigated the efficient of generation of reactive oxygen species (ROS) of Indocyanine green (ICG) by comparing two wavelengths, 780 and 808 nm. As well as the efficient of 808 nm wavelength to pass through structures with similar optical properties of skin and activate ICG by extracorporeal illumination to generate PDI in Streptococcus pneumoniae. For the first part of the work, photobleaching experiments were performed at 780 and 808 nm, different oxygen concentrations and solvents. Sensitizer bleaching was recorded by absorption spectra and then analysed by using the PDT bleaching macroscopic model to extract important parameters of ICG. It was found higher photobleaching rates when degradating with 808 nm than 780 nm wavelength, and deactivation of ICG molecule was observed to be due to type I and type II mechanisms of PDT. For second part, the PDI efficiency was validated when incident light is attenuated by phantom barriers. Characterization of the panel of 200 laser prototype was performed by emission wavelength, irradiance statibility and temperature increase. The optical transmission attenuated light was detected as phantom barriers increased. On the other hand, Monte Carlo simulation were performed in a computerized model phantom of the thoracic cage to . Finally, for the PDI experiments it was found that even with a barrier thickness of 37.10 mm a energy dose of 197.96 J/cm2 at surface of the laser panel/phantom interface is needed to achieve a total reduction of the bacterial burden. In conclusion, ICG in combination with extracorporeal illumination at 808 nm wavelength demonstrate a high efficient for treatment of lung infections as pneumonia. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-08-11 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-13102020-103630/ |
| url |
https://www.teses.usp.br/teses/disponiveis/76/76134/tde-13102020-103630/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258106520666112 |