Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Aguiar, Ricardo Gonçalves de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29102025-191417/
Resumo: Artificial Neural Networks (ANNs) have emerged as a promising alternative to traditional physicsbased Inertial Navigation System (INS) models, especially in Global Navigation Satellite System (GNSS)-denied environments. Unlike conventional physical models, ANNs can operate as \"black-boxes,\" learning the relationship between inertial sensor data and estimated position without relying on detailed physical models. However, ANN-based inertial navigation systems often face accuracy challenges in real-world environments due to trajectories that are not included in the initial training dataset. While some studies have explored fine-tuning models with new trajectory data, this approach can lead to catastrophic forgetting of previously learned information. To address this, we propose an adaptive inertial navigation system based on continual learning with rehearsal, allowing the neural network to better adapt to new trajectories while retaining performance on previously learned ones. Our network was trained using drone flight log data from the PX4 Community. Compared to traditional fine-tuning methods, our approach reduces position estimation error by approximately 90%. Additionally, when evaluated against a solution from the literature that uses the same training dataset and reports an average error of 35 meters, the proposed method achieved a maximum position error of 4.71 meters during a 2-minute GNSS-denied fligh
id USP_88db74a8b1ea8fba1cc8741e1f923eef
oai_identifier_str oai:teses.usp.br:tde-29102025-191417
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied EnvironmentsSistema de Navegação Inercial Adaptativo baseado em Aprendizado Contínuo para Ambientes sem GPSAprendizado contínuoContinual learningDronesDronesInertial navigation systemNeural networksRedes neuraisSistema de navegação inercialArtificial Neural Networks (ANNs) have emerged as a promising alternative to traditional physicsbased Inertial Navigation System (INS) models, especially in Global Navigation Satellite System (GNSS)-denied environments. Unlike conventional physical models, ANNs can operate as \"black-boxes,\" learning the relationship between inertial sensor data and estimated position without relying on detailed physical models. However, ANN-based inertial navigation systems often face accuracy challenges in real-world environments due to trajectories that are not included in the initial training dataset. While some studies have explored fine-tuning models with new trajectory data, this approach can lead to catastrophic forgetting of previously learned information. To address this, we propose an adaptive inertial navigation system based on continual learning with rehearsal, allowing the neural network to better adapt to new trajectories while retaining performance on previously learned ones. Our network was trained using drone flight log data from the PX4 Community. Compared to traditional fine-tuning methods, our approach reduces position estimation error by approximately 90%. Additionally, when evaluated against a solution from the literature that uses the same training dataset and reports an average error of 35 meters, the proposed method achieved a maximum position error of 4.71 meters during a 2-minute GNSS-denied flighAs redes neurais artificiais (RNAs) têm se mostrado uma alternativa promissora aos modelos tradicionais de navegação inercial (INS) baseados em física, especialmente em ambientes sem sinal do Sistema Global de Navegação por Satélite (GNSS). Diferente dos modelos físicos convencionais, as RNAs podem operar como \"caixas-pretas\", aprendendo diretamente a relação entre os dados dos sensores inerciais e a posição estimada, sem depender de modelos físicos detalhados. No entanto, sistemas de navegação inercial baseados em RNAs frequentemente enfrentam desafios de precisão em ambientes reais devido a trajetórias que não estão incluídas no conjunto de dados de treinamento inicial. Embora alguns estudos tenham explorado o ajuste fino de modelos com novos dados de trajetória, essa abordagem pode levar ao esquecimento de informações previamente aprendidas. Para lidar com esse problema, propomos um sistema de navegação inercial adaptativo baseado em aprendizado contínuo com repetição, que permite à rede neural se adaptar melhor a novas trajetórias, ao mesmo tempo em que preserva o desempenho nas trajetórias anteriores. Nossa rede neural foi treinada utilizando registros de voo de drones da Comunidade PX4. Em comparação com métodos tradicionais de ajuste fino, nossa abordagem reduz o erro na estimativa da posição em aproximadamente 90%. Quando comparado a uma solução da literatura que utiliza a mesma base de dados de treinamento e apresenta erro médio de 35 metros, o método proposto apresentou um erro máximo de 4,71 metros durante um voo de 2 minutos em ambiente sem GNSS.Biblioteca Digitais de Teses e Dissertações da USPBonato, VanderleiAguiar, Ricardo Gonçalves de2025-07-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-29102025-191417/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-10-30T09:06:02Zoai:teses.usp.br:tde-29102025-191417Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-10-30T09:06:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments
Sistema de Navegação Inercial Adaptativo baseado em Aprendizado Contínuo para Ambientes sem GPS
title Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments
spellingShingle Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments
Aguiar, Ricardo Gonçalves de
Aprendizado contínuo
Continual learning
Drones
Drones
Inertial navigation system
Neural networks
Redes neurais
Sistema de navegação inercial
title_short Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments
title_full Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments
title_fullStr Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments
title_full_unstemmed Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments
title_sort Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments
author Aguiar, Ricardo Gonçalves de
author_facet Aguiar, Ricardo Gonçalves de
author_role author
dc.contributor.none.fl_str_mv Bonato, Vanderlei
dc.contributor.author.fl_str_mv Aguiar, Ricardo Gonçalves de
dc.subject.por.fl_str_mv Aprendizado contínuo
Continual learning
Drones
Drones
Inertial navigation system
Neural networks
Redes neurais
Sistema de navegação inercial
topic Aprendizado contínuo
Continual learning
Drones
Drones
Inertial navigation system
Neural networks
Redes neurais
Sistema de navegação inercial
description Artificial Neural Networks (ANNs) have emerged as a promising alternative to traditional physicsbased Inertial Navigation System (INS) models, especially in Global Navigation Satellite System (GNSS)-denied environments. Unlike conventional physical models, ANNs can operate as \"black-boxes,\" learning the relationship between inertial sensor data and estimated position without relying on detailed physical models. However, ANN-based inertial navigation systems often face accuracy challenges in real-world environments due to trajectories that are not included in the initial training dataset. While some studies have explored fine-tuning models with new trajectory data, this approach can lead to catastrophic forgetting of previously learned information. To address this, we propose an adaptive inertial navigation system based on continual learning with rehearsal, allowing the neural network to better adapt to new trajectories while retaining performance on previously learned ones. Our network was trained using drone flight log data from the PX4 Community. Compared to traditional fine-tuning methods, our approach reduces position estimation error by approximately 90%. Additionally, when evaluated against a solution from the literature that uses the same training dataset and reports an average error of 35 meters, the proposed method achieved a maximum position error of 4.71 meters during a 2-minute GNSS-denied fligh
publishDate 2025
dc.date.none.fl_str_mv 2025-07-08
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29102025-191417/
url https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29102025-191417/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1848370477953712128