Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29102025-191417/ |
Resumo: | Artificial Neural Networks (ANNs) have emerged as a promising alternative to traditional physicsbased Inertial Navigation System (INS) models, especially in Global Navigation Satellite System (GNSS)-denied environments. Unlike conventional physical models, ANNs can operate as \"black-boxes,\" learning the relationship between inertial sensor data and estimated position without relying on detailed physical models. However, ANN-based inertial navigation systems often face accuracy challenges in real-world environments due to trajectories that are not included in the initial training dataset. While some studies have explored fine-tuning models with new trajectory data, this approach can lead to catastrophic forgetting of previously learned information. To address this, we propose an adaptive inertial navigation system based on continual learning with rehearsal, allowing the neural network to better adapt to new trajectories while retaining performance on previously learned ones. Our network was trained using drone flight log data from the PX4 Community. Compared to traditional fine-tuning methods, our approach reduces position estimation error by approximately 90%. Additionally, when evaluated against a solution from the literature that uses the same training dataset and reports an average error of 35 meters, the proposed method achieved a maximum position error of 4.71 meters during a 2-minute GNSS-denied fligh |
| id |
USP_88db74a8b1ea8fba1cc8741e1f923eef |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-29102025-191417 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied EnvironmentsSistema de Navegação Inercial Adaptativo baseado em Aprendizado Contínuo para Ambientes sem GPSAprendizado contínuoContinual learningDronesDronesInertial navigation systemNeural networksRedes neuraisSistema de navegação inercialArtificial Neural Networks (ANNs) have emerged as a promising alternative to traditional physicsbased Inertial Navigation System (INS) models, especially in Global Navigation Satellite System (GNSS)-denied environments. Unlike conventional physical models, ANNs can operate as \"black-boxes,\" learning the relationship between inertial sensor data and estimated position without relying on detailed physical models. However, ANN-based inertial navigation systems often face accuracy challenges in real-world environments due to trajectories that are not included in the initial training dataset. While some studies have explored fine-tuning models with new trajectory data, this approach can lead to catastrophic forgetting of previously learned information. To address this, we propose an adaptive inertial navigation system based on continual learning with rehearsal, allowing the neural network to better adapt to new trajectories while retaining performance on previously learned ones. Our network was trained using drone flight log data from the PX4 Community. Compared to traditional fine-tuning methods, our approach reduces position estimation error by approximately 90%. Additionally, when evaluated against a solution from the literature that uses the same training dataset and reports an average error of 35 meters, the proposed method achieved a maximum position error of 4.71 meters during a 2-minute GNSS-denied flighAs redes neurais artificiais (RNAs) têm se mostrado uma alternativa promissora aos modelos tradicionais de navegação inercial (INS) baseados em física, especialmente em ambientes sem sinal do Sistema Global de Navegação por Satélite (GNSS). Diferente dos modelos físicos convencionais, as RNAs podem operar como \"caixas-pretas\", aprendendo diretamente a relação entre os dados dos sensores inerciais e a posição estimada, sem depender de modelos físicos detalhados. No entanto, sistemas de navegação inercial baseados em RNAs frequentemente enfrentam desafios de precisão em ambientes reais devido a trajetórias que não estão incluídas no conjunto de dados de treinamento inicial. Embora alguns estudos tenham explorado o ajuste fino de modelos com novos dados de trajetória, essa abordagem pode levar ao esquecimento de informações previamente aprendidas. Para lidar com esse problema, propomos um sistema de navegação inercial adaptativo baseado em aprendizado contínuo com repetição, que permite à rede neural se adaptar melhor a novas trajetórias, ao mesmo tempo em que preserva o desempenho nas trajetórias anteriores. Nossa rede neural foi treinada utilizando registros de voo de drones da Comunidade PX4. Em comparação com métodos tradicionais de ajuste fino, nossa abordagem reduz o erro na estimativa da posição em aproximadamente 90%. Quando comparado a uma solução da literatura que utiliza a mesma base de dados de treinamento e apresenta erro médio de 35 metros, o método proposto apresentou um erro máximo de 4,71 metros durante um voo de 2 minutos em ambiente sem GNSS.Biblioteca Digitais de Teses e Dissertações da USPBonato, VanderleiAguiar, Ricardo Gonçalves de2025-07-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/55/55134/tde-29102025-191417/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-10-30T09:06:02Zoai:teses.usp.br:tde-29102025-191417Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-10-30T09:06:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments Sistema de Navegação Inercial Adaptativo baseado em Aprendizado Contínuo para Ambientes sem GPS |
| title |
Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments |
| spellingShingle |
Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments Aguiar, Ricardo Gonçalves de Aprendizado contínuo Continual learning Drones Drones Inertial navigation system Neural networks Redes neurais Sistema de navegação inercial |
| title_short |
Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments |
| title_full |
Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments |
| title_fullStr |
Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments |
| title_full_unstemmed |
Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments |
| title_sort |
Adaptive Inertial Navigation System based on Continual Learning in GPS-Denied Environments |
| author |
Aguiar, Ricardo Gonçalves de |
| author_facet |
Aguiar, Ricardo Gonçalves de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Bonato, Vanderlei |
| dc.contributor.author.fl_str_mv |
Aguiar, Ricardo Gonçalves de |
| dc.subject.por.fl_str_mv |
Aprendizado contínuo Continual learning Drones Drones Inertial navigation system Neural networks Redes neurais Sistema de navegação inercial |
| topic |
Aprendizado contínuo Continual learning Drones Drones Inertial navigation system Neural networks Redes neurais Sistema de navegação inercial |
| description |
Artificial Neural Networks (ANNs) have emerged as a promising alternative to traditional physicsbased Inertial Navigation System (INS) models, especially in Global Navigation Satellite System (GNSS)-denied environments. Unlike conventional physical models, ANNs can operate as \"black-boxes,\" learning the relationship between inertial sensor data and estimated position without relying on detailed physical models. However, ANN-based inertial navigation systems often face accuracy challenges in real-world environments due to trajectories that are not included in the initial training dataset. While some studies have explored fine-tuning models with new trajectory data, this approach can lead to catastrophic forgetting of previously learned information. To address this, we propose an adaptive inertial navigation system based on continual learning with rehearsal, allowing the neural network to better adapt to new trajectories while retaining performance on previously learned ones. Our network was trained using drone flight log data from the PX4 Community. Compared to traditional fine-tuning methods, our approach reduces position estimation error by approximately 90%. Additionally, when evaluated against a solution from the literature that uses the same training dataset and reports an average error of 35 meters, the proposed method achieved a maximum position error of 4.71 meters during a 2-minute GNSS-denied fligh |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-07-08 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29102025-191417/ |
| url |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-29102025-191417/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1848370477953712128 |