Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacional
| Ano de defesa: | 1990 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://teses.usp.br/teses/disponiveis/11/11134/tde-20181127-161359/ |
Resumo: | No ajuste de um modelo de regressão pelo método;:) dos mínimos quadrados, é importante destacar a influência que cada valor observado tem sobre seu respectivo valor ajustado. A matriz de projeção, conhecida como "Hat-MatrixU", contém estas informações e, juntamente com a análise dos resíduos estudentizados, fornece subsídios para determinar a existência de pontos influentes e/ou discrepantes (HOAGLH & WELSCH, 1978). Com a finalidade de detectar tais pontos em um modelo de regressão, foram propostas nos últimos anos, várias medidas de diagnóstico. As principais são apresentadas e discutidas no texto. Apesenta-se ainda um procedimento, gráfico, denominado gráfico L-R ("Leverage-Residual PIot'), de utilidade para determinar a causa da influência de uma observação através da análise dos elementos da diagonal da matriz de projeção, dos resíduos, e do efeito combinado destas duas medidas (GRAY, 1986) Para ilustração, tornou-se um exemplo com dados reais, na área de agronomia. Além disso desenvolveu-se um programa em linguagem TURBO- BASIC, utilizável em microcomputadores compatíveis ao padrão IBM-PC/XT, que proporciona as soluções desejáveis neste estudo. O método dói matriz de projeção mostrou-se eficiente na determinação de pontos influentes e/ou discrepantes. Das medidas de diagnóstico, a estatística D de COOK foi a que revelou melhores resultados. |
| id |
USP_9d22b16fef882e7bff471e5671f06820 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-20181127-161359 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacionalDiagnostics in regression: a review and a computational system developmentANÁLISE DE REGRESSÃOMÍNIMOS QUADRADOSMODELOS MATEMÁTICOSNo ajuste de um modelo de regressão pelo método;:) dos mínimos quadrados, é importante destacar a influência que cada valor observado tem sobre seu respectivo valor ajustado. A matriz de projeção, conhecida como "Hat-MatrixU", contém estas informações e, juntamente com a análise dos resíduos estudentizados, fornece subsídios para determinar a existência de pontos influentes e/ou discrepantes (HOAGLH & WELSCH, 1978). Com a finalidade de detectar tais pontos em um modelo de regressão, foram propostas nos últimos anos, várias medidas de diagnóstico. As principais são apresentadas e discutidas no texto. Apesenta-se ainda um procedimento, gráfico, denominado gráfico L-R ("Leverage-Residual PIot'), de utilidade para determinar a causa da influência de uma observação através da análise dos elementos da diagonal da matriz de projeção, dos resíduos, e do efeito combinado destas duas medidas (GRAY, 1986) Para ilustração, tornou-se um exemplo com dados reais, na área de agronomia. Além disso desenvolveu-se um programa em linguagem TURBO- BASIC, utilizável em microcomputadores compatíveis ao padrão IBM-PC/XT, que proporciona as soluções desejáveis neste estudo. O método dói matriz de projeção mostrou-se eficiente na determinação de pontos influentes e/ou discrepantes. Das medidas de diagnóstico, a estatística D de COOK foi a que revelou melhores resultados.When a least-squares fitting procedure is done it seems to be of some importance to know the influence that a y observed value could have on the y fitted datum. Such an information may be obtained from a projection matrix, the well know"Hat-Matrix", and also from the studentized residuals wich provides the identification of possible unusual data points (HOAGLIN & WELSCH, 1978). Here, a considerable number of statistics proposed for the study of outliers and the influence of observations in regression analysis is presented and discussed. The L-R plot (Leverage-Residual Plot) graphical display is also included in order to find the relative cause of influence, its residuals or their combined effects (GRAY, 1986). Finally, a real data example from agronomical sciences is studied through a computing program specially developed. It is also observed the efficiency of the"Hat-Matrix"to detect influent values and that of the Cook's D Statistcs as a diagnostic measureBiblioteca Digitais de Teses e Dissertações da USPMoraes, Roberto SimionatoVolpe, Wagner Luiz1990-12-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://teses.usp.br/teses/disponiveis/11/11134/tde-20181127-161359/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2019-04-16T20:43:32Zoai:teses.usp.br:tde-20181127-161359Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212019-04-16T20:43:32Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacional Diagnostics in regression: a review and a computational system development |
| title |
Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacional |
| spellingShingle |
Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacional Volpe, Wagner Luiz ANÁLISE DE REGRESSÃO MÍNIMOS QUADRADOS MODELOS MATEMÁTICOS |
| title_short |
Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacional |
| title_full |
Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacional |
| title_fullStr |
Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacional |
| title_full_unstemmed |
Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacional |
| title_sort |
Diagnósticos em regressão: uma revisão e desenvolvimento de um sistema computacional |
| author |
Volpe, Wagner Luiz |
| author_facet |
Volpe, Wagner Luiz |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Moraes, Roberto Simionato |
| dc.contributor.author.fl_str_mv |
Volpe, Wagner Luiz |
| dc.subject.por.fl_str_mv |
ANÁLISE DE REGRESSÃO MÍNIMOS QUADRADOS MODELOS MATEMÁTICOS |
| topic |
ANÁLISE DE REGRESSÃO MÍNIMOS QUADRADOS MODELOS MATEMÁTICOS |
| description |
No ajuste de um modelo de regressão pelo método;:) dos mínimos quadrados, é importante destacar a influência que cada valor observado tem sobre seu respectivo valor ajustado. A matriz de projeção, conhecida como "Hat-MatrixU", contém estas informações e, juntamente com a análise dos resíduos estudentizados, fornece subsídios para determinar a existência de pontos influentes e/ou discrepantes (HOAGLH & WELSCH, 1978). Com a finalidade de detectar tais pontos em um modelo de regressão, foram propostas nos últimos anos, várias medidas de diagnóstico. As principais são apresentadas e discutidas no texto. Apesenta-se ainda um procedimento, gráfico, denominado gráfico L-R ("Leverage-Residual PIot'), de utilidade para determinar a causa da influência de uma observação através da análise dos elementos da diagonal da matriz de projeção, dos resíduos, e do efeito combinado destas duas medidas (GRAY, 1986) Para ilustração, tornou-se um exemplo com dados reais, na área de agronomia. Além disso desenvolveu-se um programa em linguagem TURBO- BASIC, utilizável em microcomputadores compatíveis ao padrão IBM-PC/XT, que proporciona as soluções desejáveis neste estudo. O método dói matriz de projeção mostrou-se eficiente na determinação de pontos influentes e/ou discrepantes. Das medidas de diagnóstico, a estatística D de COOK foi a que revelou melhores resultados. |
| publishDate |
1990 |
| dc.date.none.fl_str_mv |
1990-12-11 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://teses.usp.br/teses/disponiveis/11/11134/tde-20181127-161359/ |
| url |
http://teses.usp.br/teses/disponiveis/11/11134/tde-20181127-161359/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258317889470464 |