Detecção de gestos manuais utilizando câmeras de profundidade

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Prado Neto, Elias Ximenes do
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/76/76132/tde-08082014-140256/
Resumo: É descrito o projeto de um sistema baseado em visão computacional, para o reconhecimento de poses manuais distintas, além da discriminação e rastreamento de seus membros. Entre os requisitos prioritários deste software estão a eficácia e a eficiência para essas tarefas, de forma a possibilitar o controle em tempo real de sistemas computacionais, por meio de gestos de mãos. Além desses fatores, a portabilidade para outros dispositivos e plataformas computacionais, e a possibilidade de extensão da quantidade de poses iniciais, também consiste em condições importantes para a sua funcionalidade. Essas características tendem a promover a popularização da interface proposta, possibilitando a sua aplicação para diversas finalidades e situações; contribuindo dessa forma para a difusão deste tipo de tecnologia e o desenvolvimento das áreas de interfaces gestuais e visão computacional. Vários métodos foram desenvolvidos e pesquisados com base na metodologia de extração de características, utilizando algoritmos de processamento de imagens, análise de vídeo, e visão computacional, além de softwares de aprendizado de máquina para classificação de imagens. Como dispositivo de captura, foi selecionada uma câmera de profundidade, visando obter informações auxiliares aos vários processos associados, reduzindo assim os custos computacionais inerentes e possibilitando a manipulação de sistemas eletrônicos em espaços virtuais tridimensionais. Por meio desse dispositivo, foram filmados alguns voluntários, realizando as poses manuais propostas, de forma a validar os algoritmos desenvolvidos e possibilitar o treinamento dos classificadores utilizados. Esse registro foi necessário, já que não foram encontradas bases de dados disponíveis contendo imagens com informações adequadas para os métodos pesquisados. Por fim, foi desenvolvido um conjunto de métodos capaz de atingir esses objetivos, através de sua combinação para adequação a diferentes dispositivos e tarefas, abrangendo assim todos os requisitos identificados inicialmente. Além do sistema implementado, a publicação da base de imagens de poses de mãos produzida também consiste em uma contribuição para as áreas do conhecimento associadas a este trabalho. Uma vez que as pesquisas realizadas indicam que esta base corresponde ao primeiro conjunto de dados disponibilizado, compatíveis com vários métodos de detecção de gestos manuais por visão computacional, acredita-se que esta venha a auxiliar ao desenvolvimento de softwares com finalidades semelhantes, além possibilitar uma comparação adequada entre o desempenho desses, por meio de sua utilização.
id USP_a000fc0cc46bb5404be173b86132540d
oai_identifier_str oai:teses.usp.br:tde-08082014-140256
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Detecção de gestos manuais utilizando câmeras de profundidadeDetection of hand gestures using depth camerasBase de dadosCâmera de profundidadeDatabaseDepth câmeraGestos manuaisGestural interfaceHand gesturesInterface gestualKinectKinectÉ descrito o projeto de um sistema baseado em visão computacional, para o reconhecimento de poses manuais distintas, além da discriminação e rastreamento de seus membros. Entre os requisitos prioritários deste software estão a eficácia e a eficiência para essas tarefas, de forma a possibilitar o controle em tempo real de sistemas computacionais, por meio de gestos de mãos. Além desses fatores, a portabilidade para outros dispositivos e plataformas computacionais, e a possibilidade de extensão da quantidade de poses iniciais, também consiste em condições importantes para a sua funcionalidade. Essas características tendem a promover a popularização da interface proposta, possibilitando a sua aplicação para diversas finalidades e situações; contribuindo dessa forma para a difusão deste tipo de tecnologia e o desenvolvimento das áreas de interfaces gestuais e visão computacional. Vários métodos foram desenvolvidos e pesquisados com base na metodologia de extração de características, utilizando algoritmos de processamento de imagens, análise de vídeo, e visão computacional, além de softwares de aprendizado de máquina para classificação de imagens. Como dispositivo de captura, foi selecionada uma câmera de profundidade, visando obter informações auxiliares aos vários processos associados, reduzindo assim os custos computacionais inerentes e possibilitando a manipulação de sistemas eletrônicos em espaços virtuais tridimensionais. Por meio desse dispositivo, foram filmados alguns voluntários, realizando as poses manuais propostas, de forma a validar os algoritmos desenvolvidos e possibilitar o treinamento dos classificadores utilizados. Esse registro foi necessário, já que não foram encontradas bases de dados disponíveis contendo imagens com informações adequadas para os métodos pesquisados. Por fim, foi desenvolvido um conjunto de métodos capaz de atingir esses objetivos, através de sua combinação para adequação a diferentes dispositivos e tarefas, abrangendo assim todos os requisitos identificados inicialmente. Além do sistema implementado, a publicação da base de imagens de poses de mãos produzida também consiste em uma contribuição para as áreas do conhecimento associadas a este trabalho. Uma vez que as pesquisas realizadas indicam que esta base corresponde ao primeiro conjunto de dados disponibilizado, compatíveis com vários métodos de detecção de gestos manuais por visão computacional, acredita-se que esta venha a auxiliar ao desenvolvimento de softwares com finalidades semelhantes, além possibilitar uma comparação adequada entre o desempenho desses, por meio de sua utilização.A project of a computer vision based system is described here, for the recognition of different kinds of hand poses, in addition to the discrimination and tracking of its members. Among the software requirements priority, were the efficiency and effectiveness in these tasks, in order to enable the real time control of computer systems by hand gestures. Besides these features, the portability to various devices and computational platforms, and the extension possibility of initial pose number, are also importants conditions for its functionality. Several methods have been developed and researched, based on the methodology of feature extraction, using image processing, video analysis, and computer vision algorithms; in addition to machine learning software for image classification. As capture device, was selected a depth camera, in order to obtain helper information to several associated processes, so reducing the computational costs involved, and enabling handling electronic systems in three-dimensional virtual spaces. Through this device, some volunteers were recorded, performing the proposed hand poses, in order to validate the developed algorithms and to allow the used classifiers training. This record was required, since available databases containing images with relevant information for researched methods was not found. Finally, were developed a set of methods able to achieve these goals, through its combination for adaptation to different devices and tasks, thus covering all requirements initially identified. Besides the developed system, the publication of the hand poses image database produced, is also an contribution to the field of knowledge related with this work. Since the researches carried out indicated that this database is the first set of available data, compatible with different computer vision detection methods for hand gestures, it\'s believed that this will assist in developing software with similar purposes, besides permit a proper comparison of the performances, by means of its use.Biblioteca Digitais de Teses e Dissertações da USPBruno, Odemir MartinezPrado Neto, Elias Ximenes do2014-05-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/76/76132/tde-08082014-140256/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:11:54Zoai:teses.usp.br:tde-08082014-140256Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:11:54Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Detecção de gestos manuais utilizando câmeras de profundidade
Detection of hand gestures using depth cameras
title Detecção de gestos manuais utilizando câmeras de profundidade
spellingShingle Detecção de gestos manuais utilizando câmeras de profundidade
Prado Neto, Elias Ximenes do
Base de dados
Câmera de profundidade
Database
Depth câmera
Gestos manuais
Gestural interface
Hand gestures
Interface gestual
Kinect
Kinect
title_short Detecção de gestos manuais utilizando câmeras de profundidade
title_full Detecção de gestos manuais utilizando câmeras de profundidade
title_fullStr Detecção de gestos manuais utilizando câmeras de profundidade
title_full_unstemmed Detecção de gestos manuais utilizando câmeras de profundidade
title_sort Detecção de gestos manuais utilizando câmeras de profundidade
author Prado Neto, Elias Ximenes do
author_facet Prado Neto, Elias Ximenes do
author_role author
dc.contributor.none.fl_str_mv Bruno, Odemir Martinez
dc.contributor.author.fl_str_mv Prado Neto, Elias Ximenes do
dc.subject.por.fl_str_mv Base de dados
Câmera de profundidade
Database
Depth câmera
Gestos manuais
Gestural interface
Hand gestures
Interface gestual
Kinect
Kinect
topic Base de dados
Câmera de profundidade
Database
Depth câmera
Gestos manuais
Gestural interface
Hand gestures
Interface gestual
Kinect
Kinect
description É descrito o projeto de um sistema baseado em visão computacional, para o reconhecimento de poses manuais distintas, além da discriminação e rastreamento de seus membros. Entre os requisitos prioritários deste software estão a eficácia e a eficiência para essas tarefas, de forma a possibilitar o controle em tempo real de sistemas computacionais, por meio de gestos de mãos. Além desses fatores, a portabilidade para outros dispositivos e plataformas computacionais, e a possibilidade de extensão da quantidade de poses iniciais, também consiste em condições importantes para a sua funcionalidade. Essas características tendem a promover a popularização da interface proposta, possibilitando a sua aplicação para diversas finalidades e situações; contribuindo dessa forma para a difusão deste tipo de tecnologia e o desenvolvimento das áreas de interfaces gestuais e visão computacional. Vários métodos foram desenvolvidos e pesquisados com base na metodologia de extração de características, utilizando algoritmos de processamento de imagens, análise de vídeo, e visão computacional, além de softwares de aprendizado de máquina para classificação de imagens. Como dispositivo de captura, foi selecionada uma câmera de profundidade, visando obter informações auxiliares aos vários processos associados, reduzindo assim os custos computacionais inerentes e possibilitando a manipulação de sistemas eletrônicos em espaços virtuais tridimensionais. Por meio desse dispositivo, foram filmados alguns voluntários, realizando as poses manuais propostas, de forma a validar os algoritmos desenvolvidos e possibilitar o treinamento dos classificadores utilizados. Esse registro foi necessário, já que não foram encontradas bases de dados disponíveis contendo imagens com informações adequadas para os métodos pesquisados. Por fim, foi desenvolvido um conjunto de métodos capaz de atingir esses objetivos, através de sua combinação para adequação a diferentes dispositivos e tarefas, abrangendo assim todos os requisitos identificados inicialmente. Além do sistema implementado, a publicação da base de imagens de poses de mãos produzida também consiste em uma contribuição para as áreas do conhecimento associadas a este trabalho. Uma vez que as pesquisas realizadas indicam que esta base corresponde ao primeiro conjunto de dados disponibilizado, compatíveis com vários métodos de detecção de gestos manuais por visão computacional, acredita-se que esta venha a auxiliar ao desenvolvimento de softwares com finalidades semelhantes, além possibilitar uma comparação adequada entre o desempenho desses, por meio de sua utilização.
publishDate 2014
dc.date.none.fl_str_mv 2014-05-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/76/76132/tde-08082014-140256/
url http://www.teses.usp.br/teses/disponiveis/76/76132/tde-08082014-140256/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815257979660795904