Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergetics

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Mezzacappo, Natasha Ferreira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/76/76133/tde-13112024-125203/
Resumo: Mitochondria, as essential organelles in mammalian cells, play a crucial role in various therapeutic approaches, including photobiomodulation (PBM), photodynamic therapy (PDT), and hyperthermia, which are the primary focus of this study. Despite their clinical significance, many fundamental aspects of how these therapies impact mitochondrial function remain poorly understood, making this an important area for research. Therefore, this study proposes an in vitro investigation to assess the effects of these therapeutic principles on the mitochondrial bioenergetics of mouse liver. To analyze the effects of PBM, high-resolution respirometry (HRR) was employed on isolated mitochondria to evaluate both the real-time and post-irradiation impacts of 635 nm laser irradiation. Mitochondrial swelling was also assessed. The effects of PDT at 635 nm on mitochondrial respiration and swelling were examined by irradiating isolated mitochondria in vitro under three distinct conditions: following the exogenous application of -aminolevulinic acid (ALA), after protoporphyrin IX (PpIX) application, and following ALA-induced PpIX mitochondrial synthesis in vivo. Time-dependent thermal changes in mitochondrial respiration were investigated for hyperthermia using cultured mouse hepatocytes and isolated mitochondria. The findings regarding PBM revealed that real-time analysis of 635 nm irradiation produced different outcomes compared to post-irradiation assessments; however, both approaches indicated an overall enhancement of mitochondrial inner membrane permeability. In the first PDT condition, an increased proton leak was observed upon ALA irradiation, suggesting enhanced ALA auto-oxidation and accelerated production of reactive oxygen species (ROS). When comparing mitochondrial respiration and swelling experiments following PDT with exogenous PpIX versus ALA-induced endogenous PpIX, it was noted that PDT caused more significant damage to the respiratory system with exogenous PpIX, which contradicted existing literature and may have been influenced by the chosen experimental conditions. Regarding hyperthermia, results differed between isolated mitochondria and hepatocytes. Hepatocytes exhibited greater damage when exposed to temperatures of 45 and 47 °C, resulting in decreased physiological respiration, inhibition of the phosphorylation system, likely damage to complex I, and the release of cytochrome C. In contrast, increased temperature and incubation time affected isolated mitochondria, leading to progressively impaired electron transport chain function, compromised phosphorylation system, increased proton leak, and uncoupled respiration, all contributing to diminished respiratory control. These findings highlight the significant role of cellular machinery in protecting mitochondria from thermal damage. Furthermore, the results underscore that both temperature and incubation time play critical roles in analyzing hyperthermia-induced effects. Overall, this study emphasizes that experimental design profoundly influences outcomes when investigating mitochondrial responses to these therapeutic techniques.
id USP_a08a84c06725aee9f03416bb0be0ca74
oai_identifier_str oai:teses.usp.br:tde-13112024-125203
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergeticsEfeitos da fotobiomodulação, terapia fotodinâmica e hipertermia na bioenergética das mitocôndrias de fígado de camundongoFotobiomodulaçãoHigh-resolution respirometryHipertermiaHyperthermiaMitochondriaMitocôndriasPhotobiomodulationPhotodynamic therapyRespirometria de alta resoluçãoTerapia fotodinâmicaMitochondria, as essential organelles in mammalian cells, play a crucial role in various therapeutic approaches, including photobiomodulation (PBM), photodynamic therapy (PDT), and hyperthermia, which are the primary focus of this study. Despite their clinical significance, many fundamental aspects of how these therapies impact mitochondrial function remain poorly understood, making this an important area for research. Therefore, this study proposes an in vitro investigation to assess the effects of these therapeutic principles on the mitochondrial bioenergetics of mouse liver. To analyze the effects of PBM, high-resolution respirometry (HRR) was employed on isolated mitochondria to evaluate both the real-time and post-irradiation impacts of 635 nm laser irradiation. Mitochondrial swelling was also assessed. The effects of PDT at 635 nm on mitochondrial respiration and swelling were examined by irradiating isolated mitochondria in vitro under three distinct conditions: following the exogenous application of -aminolevulinic acid (ALA), after protoporphyrin IX (PpIX) application, and following ALA-induced PpIX mitochondrial synthesis in vivo. Time-dependent thermal changes in mitochondrial respiration were investigated for hyperthermia using cultured mouse hepatocytes and isolated mitochondria. The findings regarding PBM revealed that real-time analysis of 635 nm irradiation produced different outcomes compared to post-irradiation assessments; however, both approaches indicated an overall enhancement of mitochondrial inner membrane permeability. In the first PDT condition, an increased proton leak was observed upon ALA irradiation, suggesting enhanced ALA auto-oxidation and accelerated production of reactive oxygen species (ROS). When comparing mitochondrial respiration and swelling experiments following PDT with exogenous PpIX versus ALA-induced endogenous PpIX, it was noted that PDT caused more significant damage to the respiratory system with exogenous PpIX, which contradicted existing literature and may have been influenced by the chosen experimental conditions. Regarding hyperthermia, results differed between isolated mitochondria and hepatocytes. Hepatocytes exhibited greater damage when exposed to temperatures of 45 and 47 °C, resulting in decreased physiological respiration, inhibition of the phosphorylation system, likely damage to complex I, and the release of cytochrome C. In contrast, increased temperature and incubation time affected isolated mitochondria, leading to progressively impaired electron transport chain function, compromised phosphorylation system, increased proton leak, and uncoupled respiration, all contributing to diminished respiratory control. These findings highlight the significant role of cellular machinery in protecting mitochondria from thermal damage. Furthermore, the results underscore that both temperature and incubation time play critical roles in analyzing hyperthermia-induced effects. Overall, this study emphasizes that experimental design profoundly influences outcomes when investigating mitochondrial responses to these therapeutic techniques.As mitocôndrias, organelas essenciais nas células de mamíferos, têm papel importante em várias abordagens terapêuticas, incluindo fotobiomodulação (FBM), terapia fotodinâmica (TFD) e hipertermia, as quais são o principal foco desse estudo. Apesar da relevância clínica dessas terapias, muitos aspectos fundamentais de como elas impactam na função mitocondrial ainda permanecem pouco entendidos, tornando essa uma área de pesquisa importante. Assim, esse estudo propõe uma investigação in vitro para verificar os efeitos desses princípios terapêuticos na bioenergética mitocondrial de fígado de camundongo. Para analisar os efeitos da FBM, a respirometria de alta resolução foi empregada nas mitocôndrias isoladas para avaliar os impactos da irradiação com 635 nm tanto em tempo real como pós irradiação. O inchamento mitocondrial também foi analisado. Os efeitos da TFD em 635 nm na respiração e inchamento mitocondrial foram examinados irradiando in vitro as mitocôndrias isoladas em três condições diferentes: após a aplicação exógena de ácido -aminolevulínico (ALA), após aplicação de protoporfirina IX (PpIX), e após a síntese mitocondrial de PpIX in vivo pela indução com ALA. Com a hipertermia, as alterações térmicas dependentes do tempo na respiração mitocondrial foram investigadas utilizando hepatócitos de camundongo e mitocôndrias isoladas. Referente a FBM, a análise da irradiação em 635 nm produziu diferentes resultados comparados as medidas pós irradiação. No entanto, ambas as abordagens indicaram um aumento geral da permeabilidade da membrana mitocondrial interna. Na primeira condição da TFD, um aumento do vazamento de prótons foi observado após irradiação com ALA, sugerindo um aumento na auto oxidação do ALA e aceleração na produção de espécies reativas de oxigênio. Comparando os experimentos de respiração e inchamento mitocondrial após TFD com PpIX exógena versus com PpIX endógena, foi possível notar que a TFD provocou um dano mais significativo no sistema respiratório com PpIX exógena, contrariando os relatos da literatura, possivelmente influenciado pelas condições experimentais escolhidas. Com relação a hipertermia, os resultados diferem entre a análise com mitocôndrias isoladas e hepatócitos. Hepatócitos mostraram danos maiores quando expostos a temperaturas de 45 e 47 °C, resultando em diminuição da respiração fisiológica, inibição do sistema de fosforilação, provável dano ao complexo I, e liberação de citocromo C. Por outro lado, as mitocôndrias isoladas foram mais afetadas pelo aumento da temperatura e do tempo de incubação, levando ao dano progressivo na função da cadeia de transporte de elétrons, sistema de fosforilação comprometido, aumento no vazamento de prótons e desacoplamento da respiração, contribuindo para a redução do controle respiratório. Esses achados destacam a importância da maquinaria celular em proteger a mitocôndria do dano térmico. Além disso, os resultados demonstram que tanto a temperatura quanto o tempo de incubação são críticos na análise dos efeitos induzidos pela hipertermia. No geral, esse estudo ressalta que o desenho experimental influencia de maneira importante os resultados quando investigando as respostas mitocondriais a essas técnicas terapêuticas.Biblioteca Digitais de Teses e Dissertações da USPBagnato, Vanderlei SalvadorZucolotto, ValtencirMezzacappo, Natasha Ferreira2024-09-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/76/76133/tde-13112024-125203/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-11-22T18:22:02Zoai:teses.usp.br:tde-13112024-125203Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-11-22T18:22:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergetics
Efeitos da fotobiomodulação, terapia fotodinâmica e hipertermia na bioenergética das mitocôndrias de fígado de camundongo
title Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergetics
spellingShingle Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergetics
Mezzacappo, Natasha Ferreira
Fotobiomodulação
High-resolution respirometry
Hipertermia
Hyperthermia
Mitochondria
Mitocôndrias
Photobiomodulation
Photodynamic therapy
Respirometria de alta resolução
Terapia fotodinâmica
title_short Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergetics
title_full Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergetics
title_fullStr Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergetics
title_full_unstemmed Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergetics
title_sort Effects of photobiomodulation, photodynamic therapy, and hyperthermia on mouse liver mitochondria bioenergetics
author Mezzacappo, Natasha Ferreira
author_facet Mezzacappo, Natasha Ferreira
author_role author
dc.contributor.none.fl_str_mv Bagnato, Vanderlei Salvador
Zucolotto, Valtencir
dc.contributor.author.fl_str_mv Mezzacappo, Natasha Ferreira
dc.subject.por.fl_str_mv Fotobiomodulação
High-resolution respirometry
Hipertermia
Hyperthermia
Mitochondria
Mitocôndrias
Photobiomodulation
Photodynamic therapy
Respirometria de alta resolução
Terapia fotodinâmica
topic Fotobiomodulação
High-resolution respirometry
Hipertermia
Hyperthermia
Mitochondria
Mitocôndrias
Photobiomodulation
Photodynamic therapy
Respirometria de alta resolução
Terapia fotodinâmica
description Mitochondria, as essential organelles in mammalian cells, play a crucial role in various therapeutic approaches, including photobiomodulation (PBM), photodynamic therapy (PDT), and hyperthermia, which are the primary focus of this study. Despite their clinical significance, many fundamental aspects of how these therapies impact mitochondrial function remain poorly understood, making this an important area for research. Therefore, this study proposes an in vitro investigation to assess the effects of these therapeutic principles on the mitochondrial bioenergetics of mouse liver. To analyze the effects of PBM, high-resolution respirometry (HRR) was employed on isolated mitochondria to evaluate both the real-time and post-irradiation impacts of 635 nm laser irradiation. Mitochondrial swelling was also assessed. The effects of PDT at 635 nm on mitochondrial respiration and swelling were examined by irradiating isolated mitochondria in vitro under three distinct conditions: following the exogenous application of -aminolevulinic acid (ALA), after protoporphyrin IX (PpIX) application, and following ALA-induced PpIX mitochondrial synthesis in vivo. Time-dependent thermal changes in mitochondrial respiration were investigated for hyperthermia using cultured mouse hepatocytes and isolated mitochondria. The findings regarding PBM revealed that real-time analysis of 635 nm irradiation produced different outcomes compared to post-irradiation assessments; however, both approaches indicated an overall enhancement of mitochondrial inner membrane permeability. In the first PDT condition, an increased proton leak was observed upon ALA irradiation, suggesting enhanced ALA auto-oxidation and accelerated production of reactive oxygen species (ROS). When comparing mitochondrial respiration and swelling experiments following PDT with exogenous PpIX versus ALA-induced endogenous PpIX, it was noted that PDT caused more significant damage to the respiratory system with exogenous PpIX, which contradicted existing literature and may have been influenced by the chosen experimental conditions. Regarding hyperthermia, results differed between isolated mitochondria and hepatocytes. Hepatocytes exhibited greater damage when exposed to temperatures of 45 and 47 °C, resulting in decreased physiological respiration, inhibition of the phosphorylation system, likely damage to complex I, and the release of cytochrome C. In contrast, increased temperature and incubation time affected isolated mitochondria, leading to progressively impaired electron transport chain function, compromised phosphorylation system, increased proton leak, and uncoupled respiration, all contributing to diminished respiratory control. These findings highlight the significant role of cellular machinery in protecting mitochondria from thermal damage. Furthermore, the results underscore that both temperature and incubation time play critical roles in analyzing hyperthermia-induced effects. Overall, this study emphasizes that experimental design profoundly influences outcomes when investigating mitochondrial responses to these therapeutic techniques.
publishDate 2024
dc.date.none.fl_str_mv 2024-09-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/76/76133/tde-13112024-125203/
url https://www.teses.usp.br/teses/disponiveis/76/76133/tde-13112024-125203/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818598505875243008