The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniques
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/11/11140/tde-04042025-163503/ |
Resumo: | Brazilian agricultural production is a major supplier of good the international market, applying research and technology to improve yield, reduce costs, and preserve natural resources, especially water. Soil available water (AW) relies on soil attributes, such as texture, structure, and mineral composition, and determines plant development. This study aimed to map the total available water of the soil (TAW) across the Brazilian territory using soil data, remote sensing, machine learning, and hydrological models. A georeferenced database with 41,438 soil profiles was used. Soil attributes (clay, silt, sand, and organic matter) were in layers at 1 m deep. We implemented a pedotransfer function (PTF) to calculate soil hydraulic parameters, SWAP, and MFlux hydrological models to calculate field capacity (FC) and permanent wilting point (PWP). We combined these models to calculate the TAW for all soil profiles. We calibrated a Random Forest algorithm with 21 environmental covariates, including topography, spectral characteristics of vegetation, and soil. The predictive model showed high accuracy (R2 = 0.66), highlighting the relevance of spectral and topographic characteristics in soil water retention. The results demonstrated significant variations in TAW among the biomes (Amazon Forest, Caatinga, Cerrado, Atlantic Forest, Pampa, and Pantanal), soil classes (Acrisol/Alisol, Cambisol, Gleysol, Ferralsol, Arenosol, Leptosol, Nitisol, and Plinthosol) and land uses (Forest, Savanna, Mangrove, Floodable, Wetland, Grassland, Herbaceous, Pasture, Soybean, Sugar cane, Rice, Cotton, Coffee, Citrus, Palm, Silviculture), reflecting complex interactions between environmental and pedological factors. The Brazilian semiarid region (143 mm.m-1) and the MATOPIBA region (138 mm m-1) had the lowest TAW values, highlighting the need for adequate management practices and environmental monitoring. The spatial distribution of TAW provides valuable insights for sustainable land management, guiding decisions on irrigation, agricultural practices, and conservation strategies tailored to each biome. The preservation of water resources is essential for maintaining biodiversity, ecosystem services, and agricultural productivity, especially in fragile ecosystems like the Cerrado and the Caatinga. By leveraging advanced geospatial and machine learning techniques, this study contributes to the sustainable development of Brazilian agriculture while addressing key environmental challenges. |
| id |
USP_a31ecefb8705ddec74e0cd88c918742a |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-04042025-163503 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniquesÁgua Disponível do Solo Brasileiro (TAW) adquirida por técnicas de sensoriamento remoto e aprendizado de máquinaDrenagem do soloHydrological ModelingModelagem do soloModelagem hidrológicaRemote sensingSaúde do soloSensoriamento remotoSoil DrainageSoil HealthSoil ModelingBrazilian agricultural production is a major supplier of good the international market, applying research and technology to improve yield, reduce costs, and preserve natural resources, especially water. Soil available water (AW) relies on soil attributes, such as texture, structure, and mineral composition, and determines plant development. This study aimed to map the total available water of the soil (TAW) across the Brazilian territory using soil data, remote sensing, machine learning, and hydrological models. A georeferenced database with 41,438 soil profiles was used. Soil attributes (clay, silt, sand, and organic matter) were in layers at 1 m deep. We implemented a pedotransfer function (PTF) to calculate soil hydraulic parameters, SWAP, and MFlux hydrological models to calculate field capacity (FC) and permanent wilting point (PWP). We combined these models to calculate the TAW for all soil profiles. We calibrated a Random Forest algorithm with 21 environmental covariates, including topography, spectral characteristics of vegetation, and soil. The predictive model showed high accuracy (R2 = 0.66), highlighting the relevance of spectral and topographic characteristics in soil water retention. The results demonstrated significant variations in TAW among the biomes (Amazon Forest, Caatinga, Cerrado, Atlantic Forest, Pampa, and Pantanal), soil classes (Acrisol/Alisol, Cambisol, Gleysol, Ferralsol, Arenosol, Leptosol, Nitisol, and Plinthosol) and land uses (Forest, Savanna, Mangrove, Floodable, Wetland, Grassland, Herbaceous, Pasture, Soybean, Sugar cane, Rice, Cotton, Coffee, Citrus, Palm, Silviculture), reflecting complex interactions between environmental and pedological factors. The Brazilian semiarid region (143 mm.m-1) and the MATOPIBA region (138 mm m-1) had the lowest TAW values, highlighting the need for adequate management practices and environmental monitoring. The spatial distribution of TAW provides valuable insights for sustainable land management, guiding decisions on irrigation, agricultural practices, and conservation strategies tailored to each biome. The preservation of water resources is essential for maintaining biodiversity, ecosystem services, and agricultural productivity, especially in fragile ecosystems like the Cerrado and the Caatinga. By leveraging advanced geospatial and machine learning techniques, this study contributes to the sustainable development of Brazilian agriculture while addressing key environmental challenges.A produção agrícola brasileira é uma das principais fornecedoras para o mercado internacional, utilizando pesquisa e tecnologia para melhorar a produtividade, reduzir custos e preservar os recursos naturais, especialmente a água. A água disponível no solo (AW) depende de atributos físicos do solo, como textura, estrutura e composição, sendo determinante para o desenvolvimento das plantas. Este estudo teve como objetivo mapear a água total disponível no solo (TAW) em todo o território brasileiro utilizando dados de solo, sensoriamento remoto, aprendizado de máquina e modelos hidrológicos. Foi utilizada uma base de dados georreferenciada com 41.438 perfis de solo. Os atributos do solo (argila, silte, areia e matéria orgânica) foram interpolados para espacializar camadas de até 1 m de profundidade. Implementamos uma função pedotransferência (PTF) para calcular os parâmetros hidráulicos do solo, além dos modelos hidrológicos SWAP e MFlux para estimar a capacidade de campo (FC) e o ponto de murcha permanente (PWP). Esses modelos foram combinados para calcular a TAW de todos os perfis de solo. Um algoritmo Random Forest foi calibrado com 21 covariáveis ambientais, incluindo topografia e características espectrais da vegetação e do solo. O modelo preditivo apresentou alta precisão (R2 = 0,66), destacando a relevância das características espectrais e topográficas na retenção de água no solo. Os resultados demonstraram variações significativas na TAW entre os biomas (Amazônia, Caatinga, Cerrado, Mata Atlântica, Pampa e Pantanal), classes de solo (Argissolo, Cambissolo, Gleissolo, Latossolo, Neossolo Quartzarênico, Neossolo Litólico, Nitossolo e Plintossolo) e usos da terra (Floresta, Savana, Manguezal, Áreas Alagáveis, Áreas Úmidas, Campos, Herbáceas, Pastagens, Soja, Cana-de-açúcar, Arroz, Algodão, Café, Citros, Palma e Silvicultura), refletindo interações complexas entre fatores ambientais e pedológicos. A região semiárida brasileira (143 mm.m-1) e a região de MATOPIBA (138 mm.m-1 ) apresentaram os menores valores de TAW, destacando a necessidade de práticas adequadas de manejo e monitoramento ambiental. A distribuição espacial da TAW oferece insights valiosos para o manejo sustentável da terra, orientando decisões sobre irrigação, práticas agrícolas e estratégias de conservação adaptadas a cada bioma. A preservação dos recursos hídricos é essencial para manter a biodiversidade, os serviços ecossistêmicos e a produtividade agrícola, especialmente em ecossistemas frágeis como o Cerrado e a Caatinga. Ao aproveitar tecnologias geoespaciais avançadas e aprendizado de máquina, este estudo contribui para o desenvolvimento sustentável da agricultura brasileira enquanto enfrenta desafios ambientaiscruciais.Biblioteca Digitais de Teses e Dissertações da USPDematte, Jose Alexandre MeloVogel, Letícia Guadagnin2025-02-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/11/11140/tde-04042025-163503/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-04-07T19:32:05Zoai:teses.usp.br:tde-04042025-163503Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-04-07T19:32:05Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniques Água Disponível do Solo Brasileiro (TAW) adquirida por técnicas de sensoriamento remoto e aprendizado de máquina |
| title |
The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniques |
| spellingShingle |
The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniques Vogel, Letícia Guadagnin Drenagem do solo Hydrological Modeling Modelagem do solo Modelagem hidrológica Remote sensing Saúde do solo Sensoriamento remoto Soil Drainage Soil Health Soil Modeling |
| title_short |
The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniques |
| title_full |
The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniques |
| title_fullStr |
The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniques |
| title_full_unstemmed |
The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniques |
| title_sort |
The Brazilian Soil Available Water (TAW) acquired by remote sensing and machine learning techniques |
| author |
Vogel, Letícia Guadagnin |
| author_facet |
Vogel, Letícia Guadagnin |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Dematte, Jose Alexandre Melo |
| dc.contributor.author.fl_str_mv |
Vogel, Letícia Guadagnin |
| dc.subject.por.fl_str_mv |
Drenagem do solo Hydrological Modeling Modelagem do solo Modelagem hidrológica Remote sensing Saúde do solo Sensoriamento remoto Soil Drainage Soil Health Soil Modeling |
| topic |
Drenagem do solo Hydrological Modeling Modelagem do solo Modelagem hidrológica Remote sensing Saúde do solo Sensoriamento remoto Soil Drainage Soil Health Soil Modeling |
| description |
Brazilian agricultural production is a major supplier of good the international market, applying research and technology to improve yield, reduce costs, and preserve natural resources, especially water. Soil available water (AW) relies on soil attributes, such as texture, structure, and mineral composition, and determines plant development. This study aimed to map the total available water of the soil (TAW) across the Brazilian territory using soil data, remote sensing, machine learning, and hydrological models. A georeferenced database with 41,438 soil profiles was used. Soil attributes (clay, silt, sand, and organic matter) were in layers at 1 m deep. We implemented a pedotransfer function (PTF) to calculate soil hydraulic parameters, SWAP, and MFlux hydrological models to calculate field capacity (FC) and permanent wilting point (PWP). We combined these models to calculate the TAW for all soil profiles. We calibrated a Random Forest algorithm with 21 environmental covariates, including topography, spectral characteristics of vegetation, and soil. The predictive model showed high accuracy (R2 = 0.66), highlighting the relevance of spectral and topographic characteristics in soil water retention. The results demonstrated significant variations in TAW among the biomes (Amazon Forest, Caatinga, Cerrado, Atlantic Forest, Pampa, and Pantanal), soil classes (Acrisol/Alisol, Cambisol, Gleysol, Ferralsol, Arenosol, Leptosol, Nitisol, and Plinthosol) and land uses (Forest, Savanna, Mangrove, Floodable, Wetland, Grassland, Herbaceous, Pasture, Soybean, Sugar cane, Rice, Cotton, Coffee, Citrus, Palm, Silviculture), reflecting complex interactions between environmental and pedological factors. The Brazilian semiarid region (143 mm.m-1) and the MATOPIBA region (138 mm m-1) had the lowest TAW values, highlighting the need for adequate management practices and environmental monitoring. The spatial distribution of TAW provides valuable insights for sustainable land management, guiding decisions on irrigation, agricultural practices, and conservation strategies tailored to each biome. The preservation of water resources is essential for maintaining biodiversity, ecosystem services, and agricultural productivity, especially in fragile ecosystems like the Cerrado and the Caatinga. By leveraging advanced geospatial and machine learning techniques, this study contributes to the sustainable development of Brazilian agriculture while addressing key environmental challenges. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-02-07 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-04042025-163503/ |
| url |
https://www.teses.usp.br/teses/disponiveis/11/11140/tde-04042025-163503/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1839839139233529856 |