Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnética

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Pereira, Lucas Frighetto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/17/17142/tde-07062017-100712/
Resumo: Propósito: Fraturas vertebrais por compressão (FVCs) são caracterizadas por colapso parcial de corpos vertebrais. Elas tipicamente ocorrem na população idosa de forma não traumática ou por trauma de baixa energia, podendo ser secundárias a fragilidade causada pela osteoporose (FVCs benignas) ou metástases vertebrais (FVCs malignas). Nosso trabalho tem o objetivo de detectar a presença de FVCs e de classifica-las como FVC maligna ou FVC benigna utilizando técnicas de processamento de imagens e aprendizado de máquinas em imagens ponderadas em T1 obtidas em ressonância magnética (RM). Materiais e Métodos: Foram utilizados os planos sagitais medianos das RMs da coluna lombar de 63 pacientes (38 mulheres e 25 homens) previamente diagnosticados com FVCs. Os corpos vertebrais lombares foram segmentados manualmente. Atributos de análise de níveis de cinza foram calculados do histograma dos corpos vertebrais. Foram extraídos também atributos de textura para analisar a distribuição dos níveis de cinza e atributos de forma para analisar o formato dos corpos vertebrais. No total, 102 FVCs lombares (53 benignas e 49 malignas) e 89 corpos vertebrais lombares foram analisados. Após a aplicação de métodos de seleção de atributos nos vetores de características, foram realizadas classificações com os classificadores k-nearest-neighbor (k-NN), uma rede neural artificial com função de base radial (RBF network), naïve Bayes, J48 e Support Vector Machine (SVM). O padrão de referência para calcular o desempenho diagnóstico do sistema desenvolvido foi uma classificação obtida do prontuário médico eletrônico com o diagnóstico final de cada caso, incluindo no mínimo informações a respeito de xxi biópsia para as FVC lesões malignas e acompanhamento clínico e laboratorial para as FVCs benignas. Três radiologistas classificaram os mesmos casos analisando as mesmas regiões de interesse (ROIs) que os classificadores e uma comparação entre classificadores e radiologistas foi realizada. Resultados: Os resultados obtidos pelos classificadores mostraram uma área abaixo da curva receiver operating characteristic (AUROC) de 0,984 para distinguir entre corpos vertebrais com FVC e normais e AUROC de 0,930 para discriminar entre FVC benigna e FVC maligna. Conclusão: Nosso método alcançou ótimos resultados na classificação de corpos vertebrais sem fratura, corpos vertebrais com fratura por osteoporose e corpos vertebrais com fraturas secundárias a doença metastática. Nossos resultados foram estatisticamente equivalentes ao de médicos radiologistas e se mostraram promissores na assistência em diagnóstico de FVCs.
id USP_a4bfa8017d1973ceeb8efb8e38d59b46
oai_identifier_str oai:teses.usp.br:tde-07062017-100712
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnéticaSemiautomatic classification of benign and malignant vertebral fractures in magnetic resonance imagingComputer aided diagnosisDiagnóstico auxiliado por computadorFratura vertebral por compressãoImage processingImagens de ressonância magnéticaMagnetic resonance imaging, Vertebral compression fracturesProcessamento de imagensPropósito: Fraturas vertebrais por compressão (FVCs) são caracterizadas por colapso parcial de corpos vertebrais. Elas tipicamente ocorrem na população idosa de forma não traumática ou por trauma de baixa energia, podendo ser secundárias a fragilidade causada pela osteoporose (FVCs benignas) ou metástases vertebrais (FVCs malignas). Nosso trabalho tem o objetivo de detectar a presença de FVCs e de classifica-las como FVC maligna ou FVC benigna utilizando técnicas de processamento de imagens e aprendizado de máquinas em imagens ponderadas em T1 obtidas em ressonância magnética (RM). Materiais e Métodos: Foram utilizados os planos sagitais medianos das RMs da coluna lombar de 63 pacientes (38 mulheres e 25 homens) previamente diagnosticados com FVCs. Os corpos vertebrais lombares foram segmentados manualmente. Atributos de análise de níveis de cinza foram calculados do histograma dos corpos vertebrais. Foram extraídos também atributos de textura para analisar a distribuição dos níveis de cinza e atributos de forma para analisar o formato dos corpos vertebrais. No total, 102 FVCs lombares (53 benignas e 49 malignas) e 89 corpos vertebrais lombares foram analisados. Após a aplicação de métodos de seleção de atributos nos vetores de características, foram realizadas classificações com os classificadores k-nearest-neighbor (k-NN), uma rede neural artificial com função de base radial (RBF network), naïve Bayes, J48 e Support Vector Machine (SVM). O padrão de referência para calcular o desempenho diagnóstico do sistema desenvolvido foi uma classificação obtida do prontuário médico eletrônico com o diagnóstico final de cada caso, incluindo no mínimo informações a respeito de xxi biópsia para as FVC lesões malignas e acompanhamento clínico e laboratorial para as FVCs benignas. Três radiologistas classificaram os mesmos casos analisando as mesmas regiões de interesse (ROIs) que os classificadores e uma comparação entre classificadores e radiologistas foi realizada. Resultados: Os resultados obtidos pelos classificadores mostraram uma área abaixo da curva receiver operating characteristic (AUROC) de 0,984 para distinguir entre corpos vertebrais com FVC e normais e AUROC de 0,930 para discriminar entre FVC benigna e FVC maligna. Conclusão: Nosso método alcançou ótimos resultados na classificação de corpos vertebrais sem fratura, corpos vertebrais com fratura por osteoporose e corpos vertebrais com fraturas secundárias a doença metastática. Nossos resultados foram estatisticamente equivalentes ao de médicos radiologistas e se mostraram promissores na assistência em diagnóstico de FVCs.Purpose: Vertebral compression fractures (VCFs) result in partial collapse of vertebral bodies. They usually are nontraumatic or occur with low-energy trauma in the elderly secondary to different etiologies, such as insufficiency fractures of bone fragility in osteoporosis (benign fractures) or vertebral metastasis (malignant fractures). Our study aims to detect the presence of VCFs and classify them as malignant and benign using image processing techniques and machine learning classifiers in T1-weighted magnetic resonance images (MRI). Materials and methods: We used the median sagittal planes of lumbar spine MRIs from 63 patients (38 women and 25 men) previously diagnosed with VCFs. The lumbar vertebral bodies were manually segmented and statistical features of gray levels were computed from the histogram. We also extracted texture features to analyze the gray-level distribution, and shape features to analyze the contours of the vertebral bodies. In total, 102 lumbar VCFs (53 benign and 49 malignant) and 89 normal lumbar vertebral bodies were analyzed. After run feature selection methods to the vector of features, the k-nearest-neighbor (k-NN), neural network with radial basis functions (RBF network), a naïve Bayes classifier, J48, and Support Vector Machine (SVM) were used for classification. We compared the classification obtained by these classifiers with the final diagnosis of each case, including biopsy for the malignant fractures and clinical and laboratory follow up for the benign fractures. Furthermore, three voluntary radiologists classified the same cases analyzing the same regions of interests (ROIs) used by the classifiers and a comparison between the classifiers and the radiologists was done. xxiii Results: The results obtained by the classifiers showed an area under the receiver operating characteristic curve (AUROC) of 0.984 in distinguishing between normal and fractured vertebral bodies, and AUROC of 0.930 in discriminating between benign and malignant VCFs. Conclusion: Our method reached great results in the classification of vertebral bodies without fractures, vertebral bodies with fractures due to osteoporosis and vertebral bodies with fractures due to metastatic diseases. Our results were statistically equivalent to the results of the classifications made by radiologists and they showed to be promising in diagnosis assisting of VCFs.Biblioteca Digitais de Teses e Dissertações da USPBarbosa, Marcello Henrique NogueiraPereira, Lucas Frighetto2016-12-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/17/17142/tde-07062017-100712/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2024-10-09T13:16:04Zoai:teses.usp.br:tde-07062017-100712Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T13:16:04Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnética
Semiautomatic classification of benign and malignant vertebral fractures in magnetic resonance imaging
title Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnética
spellingShingle Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnética
Pereira, Lucas Frighetto
Computer aided diagnosis
Diagnóstico auxiliado por computador
Fratura vertebral por compressão
Image processing
Imagens de ressonância magnética
Magnetic resonance imaging, Vertebral compression fractures
Processamento de imagens
title_short Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnética
title_full Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnética
title_fullStr Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnética
title_full_unstemmed Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnética
title_sort Classificação semiautomática de fraturas vertebrais benignas e malignas em imagens de ressonância magnética
author Pereira, Lucas Frighetto
author_facet Pereira, Lucas Frighetto
author_role author
dc.contributor.none.fl_str_mv Barbosa, Marcello Henrique Nogueira
dc.contributor.author.fl_str_mv Pereira, Lucas Frighetto
dc.subject.por.fl_str_mv Computer aided diagnosis
Diagnóstico auxiliado por computador
Fratura vertebral por compressão
Image processing
Imagens de ressonância magnética
Magnetic resonance imaging, Vertebral compression fractures
Processamento de imagens
topic Computer aided diagnosis
Diagnóstico auxiliado por computador
Fratura vertebral por compressão
Image processing
Imagens de ressonância magnética
Magnetic resonance imaging, Vertebral compression fractures
Processamento de imagens
description Propósito: Fraturas vertebrais por compressão (FVCs) são caracterizadas por colapso parcial de corpos vertebrais. Elas tipicamente ocorrem na população idosa de forma não traumática ou por trauma de baixa energia, podendo ser secundárias a fragilidade causada pela osteoporose (FVCs benignas) ou metástases vertebrais (FVCs malignas). Nosso trabalho tem o objetivo de detectar a presença de FVCs e de classifica-las como FVC maligna ou FVC benigna utilizando técnicas de processamento de imagens e aprendizado de máquinas em imagens ponderadas em T1 obtidas em ressonância magnética (RM). Materiais e Métodos: Foram utilizados os planos sagitais medianos das RMs da coluna lombar de 63 pacientes (38 mulheres e 25 homens) previamente diagnosticados com FVCs. Os corpos vertebrais lombares foram segmentados manualmente. Atributos de análise de níveis de cinza foram calculados do histograma dos corpos vertebrais. Foram extraídos também atributos de textura para analisar a distribuição dos níveis de cinza e atributos de forma para analisar o formato dos corpos vertebrais. No total, 102 FVCs lombares (53 benignas e 49 malignas) e 89 corpos vertebrais lombares foram analisados. Após a aplicação de métodos de seleção de atributos nos vetores de características, foram realizadas classificações com os classificadores k-nearest-neighbor (k-NN), uma rede neural artificial com função de base radial (RBF network), naïve Bayes, J48 e Support Vector Machine (SVM). O padrão de referência para calcular o desempenho diagnóstico do sistema desenvolvido foi uma classificação obtida do prontuário médico eletrônico com o diagnóstico final de cada caso, incluindo no mínimo informações a respeito de xxi biópsia para as FVC lesões malignas e acompanhamento clínico e laboratorial para as FVCs benignas. Três radiologistas classificaram os mesmos casos analisando as mesmas regiões de interesse (ROIs) que os classificadores e uma comparação entre classificadores e radiologistas foi realizada. Resultados: Os resultados obtidos pelos classificadores mostraram uma área abaixo da curva receiver operating characteristic (AUROC) de 0,984 para distinguir entre corpos vertebrais com FVC e normais e AUROC de 0,930 para discriminar entre FVC benigna e FVC maligna. Conclusão: Nosso método alcançou ótimos resultados na classificação de corpos vertebrais sem fratura, corpos vertebrais com fratura por osteoporose e corpos vertebrais com fraturas secundárias a doença metastática. Nossos resultados foram estatisticamente equivalentes ao de médicos radiologistas e se mostraram promissores na assistência em diagnóstico de FVCs.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://www.teses.usp.br/teses/disponiveis/17/17142/tde-07062017-100712/
url http://www.teses.usp.br/teses/disponiveis/17/17142/tde-07062017-100712/
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279177654108160