Transversals of graphs

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Alva, Juan Gabriel Gutierrez
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45134/tde-10012020-200714/
Resumo: The intention of this work is to study problems about transversals of graphs. A transversal of a graph is a set of vertices or edges that intersects every object of some type. We study three types of transversals: of longest paths, of longest cycles, and of triangles. For each such type of transversal, we show upper bounds on the minimum cardinality of a transversal in a given graph class. The problems we study here have a strong connection with two well-known questions in graph theory: Gallais question and Tuzas Conjecture. Gallai asked whether all longest paths in a connected graph intersect. In terms of transversals, Gallai was asking whether there is a transversal of longest paths of cardinality one. Although the answer to this question is negative, it is still open for several classes of graphs. One part of this work is as an attempt to solve Gallais question, and its corresponding analogous question for cycles, on important classes of graphs. In some of these classes we are able to solve the question and in others we present significant advances. Tuza conjectured whether the minimum cardinality of a transversal of triangles is at most twice the cardinality of a maximum packing of triangles, where a packing of triangles is a set of edge-disjoint triangles in a graph. This conjecture is still open and several related advances have been made in the literature. One part of this work is an attempt to solve Tuzas Conjecture for several classes of graphs. For some of these classes we prove the conjecture. For some other classes, the conjecture was already proved, so we show stronger results.
id USP_aa95bc914cc1609aa05631ccb46b5c50
oai_identifier_str oai:teses.usp.br:tde-10012020-200714
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Transversals of graphsNão constaGraph theoryLongest cyclesLongest pathsPackingTransversalTrianglesThe intention of this work is to study problems about transversals of graphs. A transversal of a graph is a set of vertices or edges that intersects every object of some type. We study three types of transversals: of longest paths, of longest cycles, and of triangles. For each such type of transversal, we show upper bounds on the minimum cardinality of a transversal in a given graph class. The problems we study here have a strong connection with two well-known questions in graph theory: Gallais question and Tuzas Conjecture. Gallai asked whether all longest paths in a connected graph intersect. In terms of transversals, Gallai was asking whether there is a transversal of longest paths of cardinality one. Although the answer to this question is negative, it is still open for several classes of graphs. One part of this work is as an attempt to solve Gallais question, and its corresponding analogous question for cycles, on important classes of graphs. In some of these classes we are able to solve the question and in others we present significant advances. Tuza conjectured whether the minimum cardinality of a transversal of triangles is at most twice the cardinality of a maximum packing of triangles, where a packing of triangles is a set of edge-disjoint triangles in a graph. This conjecture is still open and several related advances have been made in the literature. One part of this work is an attempt to solve Tuzas Conjecture for several classes of graphs. For some of these classes we prove the conjecture. For some other classes, the conjecture was already proved, so we show stronger results.Não constaBiblioteca Digitais de Teses e Dissertações da USPFernandes, Cristina GomesAlva, Juan Gabriel Gutierrez2018-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-10012020-200714/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-02-11T21:14:51Zoai:teses.usp.br:tde-10012020-200714Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-02-11T21:14:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Transversals of graphs
Não consta
title Transversals of graphs
spellingShingle Transversals of graphs
Alva, Juan Gabriel Gutierrez
Graph theory
Longest cycles
Longest paths
Packing
Transversal
Triangles
title_short Transversals of graphs
title_full Transversals of graphs
title_fullStr Transversals of graphs
title_full_unstemmed Transversals of graphs
title_sort Transversals of graphs
author Alva, Juan Gabriel Gutierrez
author_facet Alva, Juan Gabriel Gutierrez
author_role author
dc.contributor.none.fl_str_mv Fernandes, Cristina Gomes
dc.contributor.author.fl_str_mv Alva, Juan Gabriel Gutierrez
dc.subject.por.fl_str_mv Graph theory
Longest cycles
Longest paths
Packing
Transversal
Triangles
topic Graph theory
Longest cycles
Longest paths
Packing
Transversal
Triangles
description The intention of this work is to study problems about transversals of graphs. A transversal of a graph is a set of vertices or edges that intersects every object of some type. We study three types of transversals: of longest paths, of longest cycles, and of triangles. For each such type of transversal, we show upper bounds on the minimum cardinality of a transversal in a given graph class. The problems we study here have a strong connection with two well-known questions in graph theory: Gallais question and Tuzas Conjecture. Gallai asked whether all longest paths in a connected graph intersect. In terms of transversals, Gallai was asking whether there is a transversal of longest paths of cardinality one. Although the answer to this question is negative, it is still open for several classes of graphs. One part of this work is as an attempt to solve Gallais question, and its corresponding analogous question for cycles, on important classes of graphs. In some of these classes we are able to solve the question and in others we present significant advances. Tuza conjectured whether the minimum cardinality of a transversal of triangles is at most twice the cardinality of a maximum packing of triangles, where a packing of triangles is a set of edge-disjoint triangles in a graph. This conjecture is still open and several related advances have been made in the literature. One part of this work is an attempt to solve Tuzas Conjecture for several classes of graphs. For some of these classes we prove the conjecture. For some other classes, the conjecture was already proved, so we show stronger results.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/45/45134/tde-10012020-200714/
url https://www.teses.usp.br/teses/disponiveis/45/45134/tde-10012020-200714/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1815258063566798848