Transversals of graphs
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/45/45134/tde-10012020-200714/ |
Resumo: | The intention of this work is to study problems about transversals of graphs. A transversal of a graph is a set of vertices or edges that intersects every object of some type. We study three types of transversals: of longest paths, of longest cycles, and of triangles. For each such type of transversal, we show upper bounds on the minimum cardinality of a transversal in a given graph class. The problems we study here have a strong connection with two well-known questions in graph theory: Gallais question and Tuzas Conjecture. Gallai asked whether all longest paths in a connected graph intersect. In terms of transversals, Gallai was asking whether there is a transversal of longest paths of cardinality one. Although the answer to this question is negative, it is still open for several classes of graphs. One part of this work is as an attempt to solve Gallais question, and its corresponding analogous question for cycles, on important classes of graphs. In some of these classes we are able to solve the question and in others we present significant advances. Tuza conjectured whether the minimum cardinality of a transversal of triangles is at most twice the cardinality of a maximum packing of triangles, where a packing of triangles is a set of edge-disjoint triangles in a graph. This conjecture is still open and several related advances have been made in the literature. One part of this work is an attempt to solve Tuzas Conjecture for several classes of graphs. For some of these classes we prove the conjecture. For some other classes, the conjecture was already proved, so we show stronger results. |
| id |
USP_aa95bc914cc1609aa05631ccb46b5c50 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-10012020-200714 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Transversals of graphsNão constaGraph theoryLongest cyclesLongest pathsPackingTransversalTrianglesThe intention of this work is to study problems about transversals of graphs. A transversal of a graph is a set of vertices or edges that intersects every object of some type. We study three types of transversals: of longest paths, of longest cycles, and of triangles. For each such type of transversal, we show upper bounds on the minimum cardinality of a transversal in a given graph class. The problems we study here have a strong connection with two well-known questions in graph theory: Gallais question and Tuzas Conjecture. Gallai asked whether all longest paths in a connected graph intersect. In terms of transversals, Gallai was asking whether there is a transversal of longest paths of cardinality one. Although the answer to this question is negative, it is still open for several classes of graphs. One part of this work is as an attempt to solve Gallais question, and its corresponding analogous question for cycles, on important classes of graphs. In some of these classes we are able to solve the question and in others we present significant advances. Tuza conjectured whether the minimum cardinality of a transversal of triangles is at most twice the cardinality of a maximum packing of triangles, where a packing of triangles is a set of edge-disjoint triangles in a graph. This conjecture is still open and several related advances have been made in the literature. One part of this work is an attempt to solve Tuzas Conjecture for several classes of graphs. For some of these classes we prove the conjecture. For some other classes, the conjecture was already proved, so we show stronger results.Não constaBiblioteca Digitais de Teses e Dissertações da USPFernandes, Cristina GomesAlva, Juan Gabriel Gutierrez2018-12-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/45/45134/tde-10012020-200714/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2020-02-11T21:14:51Zoai:teses.usp.br:tde-10012020-200714Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212020-02-11T21:14:51Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Transversals of graphs Não consta |
| title |
Transversals of graphs |
| spellingShingle |
Transversals of graphs Alva, Juan Gabriel Gutierrez Graph theory Longest cycles Longest paths Packing Transversal Triangles |
| title_short |
Transversals of graphs |
| title_full |
Transversals of graphs |
| title_fullStr |
Transversals of graphs |
| title_full_unstemmed |
Transversals of graphs |
| title_sort |
Transversals of graphs |
| author |
Alva, Juan Gabriel Gutierrez |
| author_facet |
Alva, Juan Gabriel Gutierrez |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Fernandes, Cristina Gomes |
| dc.contributor.author.fl_str_mv |
Alva, Juan Gabriel Gutierrez |
| dc.subject.por.fl_str_mv |
Graph theory Longest cycles Longest paths Packing Transversal Triangles |
| topic |
Graph theory Longest cycles Longest paths Packing Transversal Triangles |
| description |
The intention of this work is to study problems about transversals of graphs. A transversal of a graph is a set of vertices or edges that intersects every object of some type. We study three types of transversals: of longest paths, of longest cycles, and of triangles. For each such type of transversal, we show upper bounds on the minimum cardinality of a transversal in a given graph class. The problems we study here have a strong connection with two well-known questions in graph theory: Gallais question and Tuzas Conjecture. Gallai asked whether all longest paths in a connected graph intersect. In terms of transversals, Gallai was asking whether there is a transversal of longest paths of cardinality one. Although the answer to this question is negative, it is still open for several classes of graphs. One part of this work is as an attempt to solve Gallais question, and its corresponding analogous question for cycles, on important classes of graphs. In some of these classes we are able to solve the question and in others we present significant advances. Tuza conjectured whether the minimum cardinality of a transversal of triangles is at most twice the cardinality of a maximum packing of triangles, where a packing of triangles is a set of edge-disjoint triangles in a graph. This conjecture is still open and several related advances have been made in the literature. One part of this work is an attempt to solve Tuzas Conjecture for several classes of graphs. For some of these classes we prove the conjecture. For some other classes, the conjecture was already proved, so we show stronger results. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-12-20 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-10012020-200714/ |
| url |
https://www.teses.usp.br/teses/disponiveis/45/45134/tde-10012020-200714/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258063566798848 |