O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger
| Ano de defesa: | 2011 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15052011-173459/ |
Resumo: | Dados A uma C*-álgebra com unidade e \\alpha um *-endomorfismo de A, um operador transferência para o par (A, \\alpha) é uma aplicação linear contínua positiva L: A --> A tal que L(\\alpha(a)b) = a L(b), para todo a, b \\in A. Nestas condições, denotamos por T(A, \\alpha, L) a C*-álgebra universal com unidade gerada por A e um elemento S sujeito às relações Sa = \\alpha(a)S e S*aS = L(a). Uma redundância é definida como o par (a, k) \\in A x \\overline{ASS* A} tal que abS = akS, para todo b \\in A. Neste trabalho definimos a C*-álgebra chamada de produto cruzado como o quociente de T(A, \\alpha, L) pelo ideal bilateral fechado I gerado pelo conjunto das diferenças a-k, para todas as redundâncias (a, k) tais que a \\in \\overline, onde R denota a Im \\alpha. Mostramos que quando \\alpha é injetor com imagem hereditária, então o produto cruzado é isomorfo à C*-álgebra universal com unidade, denotada por U(A, \\alpha), gerada por A e uma isometria T sujeita à relação \\alpha(a) = TaT*, para todo a \\in A. Também mostramos que a álgebra de Cuntz-Krieger O_A pode ser caracterizada como o produto cruzado definido neste trabalho. |
| id |
USP_ad244ff9e17cf65c5bf847b67f7f1cd1 |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-15052011-173459 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-KriegerThe crossed-product of a C*-algebra by an endomorphism and the Cuntz-Krieger algebraC*-algebraC*-álgebrasCrossed-productCuntz-KriegerCuntz-KriegerProduto-cruzadoDados A uma C*-álgebra com unidade e \\alpha um *-endomorfismo de A, um operador transferência para o par (A, \\alpha) é uma aplicação linear contínua positiva L: A --> A tal que L(\\alpha(a)b) = a L(b), para todo a, b \\in A. Nestas condições, denotamos por T(A, \\alpha, L) a C*-álgebra universal com unidade gerada por A e um elemento S sujeito às relações Sa = \\alpha(a)S e S*aS = L(a). Uma redundância é definida como o par (a, k) \\in A x \\overline{ASS* A} tal que abS = akS, para todo b \\in A. Neste trabalho definimos a C*-álgebra chamada de produto cruzado como o quociente de T(A, \\alpha, L) pelo ideal bilateral fechado I gerado pelo conjunto das diferenças a-k, para todas as redundâncias (a, k) tais que a \\in \\overline, onde R denota a Im \\alpha. Mostramos que quando \\alpha é injetor com imagem hereditária, então o produto cruzado é isomorfo à C*-álgebra universal com unidade, denotada por U(A, \\alpha), gerada por A e uma isometria T sujeita à relação \\alpha(a) = TaT*, para todo a \\in A. Também mostramos que a álgebra de Cuntz-Krieger O_A pode ser caracterizada como o produto cruzado definido neste trabalho.Given A a C*-algebra with unit and \\alpha an *-endomorphism of A, a transfer operator for the pair (A, \\alpha) is a continuous positive linear map L: A --> A such that L(\\alpha(a)b) = a L(b), for all a, b \\in A. Under these conditions , we denote by T(A, \\alpha, L) the universal C*-algebra with unit generated by A and an element S subject to the relations Sa = \\alpha(a)S and S*aS = L(a). A redundancy is defined as a pair (a, k) \\in A x \\overline{ASS* A} such that abS = akS, for all b \\in A. In tjis work we define the C*-algebra called crossed-product as the quotient of T(A, \\alpha, L) by the closed two-sided ideal I generated by the set of all differences a-k, for all redundancies (a, k) such that a \\in \\overline, where by R we mean Im \\alpha. We prove that when \\alpha is injective with an hereditary range, then the crossed-product is isomorphic to the universal C*-algebra with unit, which we denote by U(A, \\alpha), generated by A and an isometry T subject to the relation \\alpha(a) = TaT*, for all a \\in A. We also prove that the Cuntz-Krieger algebra O_A can be characterized as the crossed-product we define in this work.Biblioteca Digitais de Teses e Dissertações da USPCerri, CristinaIastremski, Priscilla2011-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/45/45131/tde-15052011-173459/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:29Zoai:teses.usp.br:tde-15052011-173459Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:29Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger The crossed-product of a C*-algebra by an endomorphism and the Cuntz-Krieger algebra |
| title |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger |
| spellingShingle |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger Iastremski, Priscilla C*-algebra C*-álgebras Crossed-product Cuntz-Krieger Cuntz-Krieger Produto-cruzado |
| title_short |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger |
| title_full |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger |
| title_fullStr |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger |
| title_full_unstemmed |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger |
| title_sort |
O produto cruzado de uma C*-álgebra por um endomorfismo e a álgebra de Cuntz-Krieger |
| author |
Iastremski, Priscilla |
| author_facet |
Iastremski, Priscilla |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cerri, Cristina |
| dc.contributor.author.fl_str_mv |
Iastremski, Priscilla |
| dc.subject.por.fl_str_mv |
C*-algebra C*-álgebras Crossed-product Cuntz-Krieger Cuntz-Krieger Produto-cruzado |
| topic |
C*-algebra C*-álgebras Crossed-product Cuntz-Krieger Cuntz-Krieger Produto-cruzado |
| description |
Dados A uma C*-álgebra com unidade e \\alpha um *-endomorfismo de A, um operador transferência para o par (A, \\alpha) é uma aplicação linear contínua positiva L: A --> A tal que L(\\alpha(a)b) = a L(b), para todo a, b \\in A. Nestas condições, denotamos por T(A, \\alpha, L) a C*-álgebra universal com unidade gerada por A e um elemento S sujeito às relações Sa = \\alpha(a)S e S*aS = L(a). Uma redundância é definida como o par (a, k) \\in A x \\overline{ASS* A} tal que abS = akS, para todo b \\in A. Neste trabalho definimos a C*-álgebra chamada de produto cruzado como o quociente de T(A, \\alpha, L) pelo ideal bilateral fechado I gerado pelo conjunto das diferenças a-k, para todas as redundâncias (a, k) tais que a \\in \\overline, onde R denota a Im \\alpha. Mostramos que quando \\alpha é injetor com imagem hereditária, então o produto cruzado é isomorfo à C*-álgebra universal com unidade, denotada por U(A, \\alpha), gerada por A e uma isometria T sujeita à relação \\alpha(a) = TaT*, para todo a \\in A. Também mostramos que a álgebra de Cuntz-Krieger O_A pode ser caracterizada como o produto cruzado definido neste trabalho. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-03-18 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15052011-173459/ |
| url |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15052011-173459/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258171583758336 |