Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown Adipocyte

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Pereira Junior, Osvaldo Rodrigues
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042025-113406/
Resumo: Brown Adipose Tissue (BAT) plays a central role in non-shivering thermogenesis for mammals by dissipating mitochondrial membrane potentials in the form of heat through UCP1. Mitochondria from every tissue are known to be permeable to potassium ions (K+), even in the absence of a specific protein pathway for that, mostly due to their high membrane potentials. K+ influx to the mitochondrial matrix is associated with increased osmotic pressure, directly impacting on matrix volume. Although this can happen in the absence of a protein pathway, a specific transporter protein for K+ entry to the mitochondrial matrix, MitoKATP, was previously described through its activity, and had its genes recently identified. Given that mitochondria from BAT have lower membrane potentials due to UCP1 activity, we hypothesized that K+ influx could be more reliant on MitoKATP as non-protein mediated K+ influx is highly dependent of potential energy as its driving force. We determined that cold exposure in mice increases MitoK levels in total BAT lysates, relative to thermoneutrality. Additionally, we observed that MitoK mRNA levels were upregulated both in mouse and human brown adipocyte differentiation. Surprisingly, hormonal stimulation of differentiated mouse adipocytes led to MitoK protein degradation after 24h. Mitochondria from CL316-stimulated BAT displayed decrease swelling rates, despite a lack of changes in their MitoK ad MitoSUR levels and oxidant production. UCP1-linkedrespiration was increased in mitochondria from CL316-stimulated BAT only in the presence of a MitoK inhibitor, but not with a MitoK activator. Moreover, pharmacological inhibition of MitoKATP in mature adipocytes was able to boost adrenergic-recruited oxygen consumption, while inhibition of the channel was necessary to support pyruvate consumption by brown adipocyte mitochondria. In preadipocytes, genetic ablation of the gene that codes for the pore-forming subunit of MitoKATP led to decreased proliferation of human pre-adipocytes, therefore compromising differentiation of these cells. For mouse pre-adipocytes, although the cellular proliferation phenotype wasn’t reproduced, ablation of the MitoK gene through the same strategy significantly impaired oxygen consumption. Overall, our results suggest that this still unexplored pathway can be of utmost importance for brown adipocyte metabolism by controlling mitochondrial volume and oxidant production.
id USP_b0b3ffd5943294853c6717dbe36f422d
oai_identifier_str oai:teses.usp.br:tde-11042025-113406
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown AdipocyteImplicações da Atividade de Canais Mitocondriais de Potássio Sensíveis a ATP em Adipócitos MarronsBrown adipose tissueMitochondriaMitochondrial volumeMitocôndriasPotássioPotassiumTecido Adiposo MarromTermogêneseThermogenesisVolume mitocondrialBrown Adipose Tissue (BAT) plays a central role in non-shivering thermogenesis for mammals by dissipating mitochondrial membrane potentials in the form of heat through UCP1. Mitochondria from every tissue are known to be permeable to potassium ions (K+), even in the absence of a specific protein pathway for that, mostly due to their high membrane potentials. K+ influx to the mitochondrial matrix is associated with increased osmotic pressure, directly impacting on matrix volume. Although this can happen in the absence of a protein pathway, a specific transporter protein for K+ entry to the mitochondrial matrix, MitoKATP, was previously described through its activity, and had its genes recently identified. Given that mitochondria from BAT have lower membrane potentials due to UCP1 activity, we hypothesized that K+ influx could be more reliant on MitoKATP as non-protein mediated K+ influx is highly dependent of potential energy as its driving force. We determined that cold exposure in mice increases MitoK levels in total BAT lysates, relative to thermoneutrality. Additionally, we observed that MitoK mRNA levels were upregulated both in mouse and human brown adipocyte differentiation. Surprisingly, hormonal stimulation of differentiated mouse adipocytes led to MitoK protein degradation after 24h. Mitochondria from CL316-stimulated BAT displayed decrease swelling rates, despite a lack of changes in their MitoK ad MitoSUR levels and oxidant production. UCP1-linkedrespiration was increased in mitochondria from CL316-stimulated BAT only in the presence of a MitoK inhibitor, but not with a MitoK activator. Moreover, pharmacological inhibition of MitoKATP in mature adipocytes was able to boost adrenergic-recruited oxygen consumption, while inhibition of the channel was necessary to support pyruvate consumption by brown adipocyte mitochondria. In preadipocytes, genetic ablation of the gene that codes for the pore-forming subunit of MitoKATP led to decreased proliferation of human pre-adipocytes, therefore compromising differentiation of these cells. For mouse pre-adipocytes, although the cellular proliferation phenotype wasn’t reproduced, ablation of the MitoK gene through the same strategy significantly impaired oxygen consumption. Overall, our results suggest that this still unexplored pathway can be of utmost importance for brown adipocyte metabolism by controlling mitochondrial volume and oxidant production.O Tecido Adiposo Marrom (BAT, do inglês brown adipose tissue), tem um papel central na termogênese não associada a tremor em mamíferos, dissipando energia potencial da membrana interna mitocondrial na forma de calor, através da proteína UCP1. Mitocôndrias de todos os tecidos são conhecidas por serem permeáveis a íons potássio (K+), mesmo na ausência de uma via proteica de importe iônico para essa espécie, o que é causado pelos altos potenciais de membrana. O influxo de K+ para a matriz mitocondrial está associado com aumento na pressão osmótica, impactando diretamente o volume da matriz. Apesar desse processo ocorrer na ausência de uma via proteica, existe também um canal para K+ na membrana interna mitocôndria, MitoKATP, que foi previamente descrito pela sua atividade e teve seus genes identificados posteriormente. Dado que mitocôndrias de BAT apresentam menores potenciais de membranas devido à atividade de UCP1, nós hipotetizamos que o influxo de K+ deve ocorrer predominantemente via MitoKATP, em relação à via não proteica, uma vez que esta requereria a energia potencial como força motriz. Nós observamos que a exposição de camundongos ao frio é capaz de aumentar os níveis de MitoK em lisados totais de BAT, em relação à termoneutralidade. Ainda, vimos que os níveis do mRNA de MitoK são incrementados pela diferenciação de adipócitos marrons. Surpreendentemente, o estímulo hormonal de adipócitos murinos levou à degradação proteica de MitoK após 24h.Mitocôndrias isoladas de BAT estimulado com CL316 apresentaram menores taxas de inchamento, apesar de possuírem níveis semelhantes de MitoK e MitoSUR, além de taxas de liberação de oxidantes muito similares a mitocôndrias de BAT controle. A respiração associada à atividade de UCP1 foi aumentada em mitocôndrias de BAT estimulado, apenas quando na presença do inibidor de MitoK, e não na presença de seu ativador. Ademais, a inibição farmacológica do MitoKATP em adipócitos maduros foi capaz de incrementar o consumo de oxigênio associado ao estímulo adrenérgico, enquanto a inibição do canal foi necessária para ativar o consumo de piruvato por mitocôndrias de adipócitos marrons. Em pré-adipócitos, a deficiência genética da sequência codificante para a subunidade formadora do poro de MitoKATP levou à uma diminuição na taxa de proliferação de adipócitos humanos, comprometendo, portanto, a diferenciação dessas células em adipócitos maduros. Essa observação correlacionou com uma diminuição expressiva do consumo de oxigênio em células MitoK deficientes. Em pré-adipócitos murinos, apesar de não haver diferenças em relação à proliferação, a deficiência no gene MitoK levou à uma diminuição no consumo de oxigênio. Em suma, nossos resultados sugerem que essa via ainda não explorada pode ser de grande relevância pra respiração mitocondrial, produção de oxidantes e metabolismo do tecido adiposo marrom, através do controle do volume da matriz mitocondrial e produção de oxidantes.Biblioteca Digitais de Teses e Dissertações da USPKowaltowski, Alícia JulianaPereira Junior, Osvaldo Rodrigues2024-03-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042025-113406/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2025-05-05T18:03:02Zoai:teses.usp.br:tde-11042025-113406Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212025-05-05T18:03:02Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown Adipocyte
Implicações da Atividade de Canais Mitocondriais de Potássio Sensíveis a ATP em Adipócitos Marrons
title Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown Adipocyte
spellingShingle Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown Adipocyte
Pereira Junior, Osvaldo Rodrigues
Brown adipose tissue
Mitochondria
Mitochondrial volume
Mitocôndrias
Potássio
Potassium
Tecido Adiposo Marrom
Termogênese
Thermogenesis
Volume mitocondrial
title_short Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown Adipocyte
title_full Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown Adipocyte
title_fullStr Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown Adipocyte
title_full_unstemmed Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown Adipocyte
title_sort Implications of Mitochondrial ATP-Sensitive Potassium Channel Activity on Brown Adipocyte
author Pereira Junior, Osvaldo Rodrigues
author_facet Pereira Junior, Osvaldo Rodrigues
author_role author
dc.contributor.none.fl_str_mv Kowaltowski, Alícia Juliana
dc.contributor.author.fl_str_mv Pereira Junior, Osvaldo Rodrigues
dc.subject.por.fl_str_mv Brown adipose tissue
Mitochondria
Mitochondrial volume
Mitocôndrias
Potássio
Potassium
Tecido Adiposo Marrom
Termogênese
Thermogenesis
Volume mitocondrial
topic Brown adipose tissue
Mitochondria
Mitochondrial volume
Mitocôndrias
Potássio
Potassium
Tecido Adiposo Marrom
Termogênese
Thermogenesis
Volume mitocondrial
description Brown Adipose Tissue (BAT) plays a central role in non-shivering thermogenesis for mammals by dissipating mitochondrial membrane potentials in the form of heat through UCP1. Mitochondria from every tissue are known to be permeable to potassium ions (K+), even in the absence of a specific protein pathway for that, mostly due to their high membrane potentials. K+ influx to the mitochondrial matrix is associated with increased osmotic pressure, directly impacting on matrix volume. Although this can happen in the absence of a protein pathway, a specific transporter protein for K+ entry to the mitochondrial matrix, MitoKATP, was previously described through its activity, and had its genes recently identified. Given that mitochondria from BAT have lower membrane potentials due to UCP1 activity, we hypothesized that K+ influx could be more reliant on MitoKATP as non-protein mediated K+ influx is highly dependent of potential energy as its driving force. We determined that cold exposure in mice increases MitoK levels in total BAT lysates, relative to thermoneutrality. Additionally, we observed that MitoK mRNA levels were upregulated both in mouse and human brown adipocyte differentiation. Surprisingly, hormonal stimulation of differentiated mouse adipocytes led to MitoK protein degradation after 24h. Mitochondria from CL316-stimulated BAT displayed decrease swelling rates, despite a lack of changes in their MitoK ad MitoSUR levels and oxidant production. UCP1-linkedrespiration was increased in mitochondria from CL316-stimulated BAT only in the presence of a MitoK inhibitor, but not with a MitoK activator. Moreover, pharmacological inhibition of MitoKATP in mature adipocytes was able to boost adrenergic-recruited oxygen consumption, while inhibition of the channel was necessary to support pyruvate consumption by brown adipocyte mitochondria. In preadipocytes, genetic ablation of the gene that codes for the pore-forming subunit of MitoKATP led to decreased proliferation of human pre-adipocytes, therefore compromising differentiation of these cells. For mouse pre-adipocytes, although the cellular proliferation phenotype wasn’t reproduced, ablation of the MitoK gene through the same strategy significantly impaired oxygen consumption. Overall, our results suggest that this still unexplored pathway can be of utmost importance for brown adipocyte metabolism by controlling mitochondrial volume and oxidant production.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042025-113406/
url https://www.teses.usp.br/teses/disponiveis/46/46131/tde-11042025-113406/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1844786332128247808