Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://www.teses.usp.br/teses/disponiveis/18/18153/tde-29042013-114436/ |
Resumo: | Esta tese consiste em desenvolver um sistema de identificação e classificação de falhas em motores de indução trifásico. As falhas analisadas foram simuladas em laboratório e envolvem problemas elétricos, como curto-circuito no estator, e problemas mecânicos, como barras quebradas no rotor. O sistema computacional proposto é formado pela transformada discreta wavelet, pelo cálculo de variáveis estatísticas e por redes neurais artificiais. A partir dos sinais elétricos da corrente do estator, a transformada wavelet produz os coeficientes característicos das falhas, os quais são usados no cálculo das variáveis estatísticas, como a média, root mean square, skewness e kurtosis. Estes valores são transmitidos como dados de entrada para as redes neurais que identificam as falhas e classificam a natureza das mesmas. Por fim, resultados obtidos visam validar a metodologia sugerida, que buscou nos sistemas inteligentes soluções eficazes para diagnosticar falhas em máquinas elétricas. |
| id |
USP_b0b6c62adf85c8732fa2b034b10dba8a |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-29042013-114436 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Identificação de falhas em motores de indução trifásicos usando sistemas inteligentesIdentification of faults in three-phase induction motors using intelligent systemsArtificial neural networksFaults diagnosis and identificationIdentificação e diagnóstico de falhasIntelligent systemMotor de indução trifásicoRedes neurais artificiaisSistemas inteligentesThree-phase induction motorEsta tese consiste em desenvolver um sistema de identificação e classificação de falhas em motores de indução trifásico. As falhas analisadas foram simuladas em laboratório e envolvem problemas elétricos, como curto-circuito no estator, e problemas mecânicos, como barras quebradas no rotor. O sistema computacional proposto é formado pela transformada discreta wavelet, pelo cálculo de variáveis estatísticas e por redes neurais artificiais. A partir dos sinais elétricos da corrente do estator, a transformada wavelet produz os coeficientes característicos das falhas, os quais são usados no cálculo das variáveis estatísticas, como a média, root mean square, skewness e kurtosis. Estes valores são transmitidos como dados de entrada para as redes neurais que identificam as falhas e classificam a natureza das mesmas. Por fim, resultados obtidos visam validar a metodologia sugerida, que buscou nos sistemas inteligentes soluções eficazes para diagnosticar falhas em máquinas elétricas.This thesis consists in developing a system for the identification and classification of faults in three-phase electric motors. The faults were analyzed and simulated in the laboratory and involve electrical problems, such as short circuit in the stator, and mechanical problems, such as broken rotor bars. The proposed computer system is formed by discrete wavelet transform, by calculation of statistical variables and for artificial neural networks. From the electrical signals of the stator current, the wavelet transform produces characteristic coefficients of faults, which are extracted by calculating of statistics variables, such as mean, root mean square, skewness and kurtosis. These values are passed as input to the neural networks that identify faults and the severity of it. Finally, results aimed at validating the methodology suggested that sought effective solutions in intelligent systems to diagnose faults in electrical machines.Biblioteca Digitais de Teses e Dissertações da USPSilva, Ivan Nunes daSantos, Fernanda Maria da Cunha2013-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/18/18153/tde-29042013-114436/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2016-07-28T16:10:35Zoai:teses.usp.br:tde-29042013-114436Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212016-07-28T16:10:35Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes Identification of faults in three-phase induction motors using intelligent systems |
| title |
Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes |
| spellingShingle |
Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes Santos, Fernanda Maria da Cunha Artificial neural networks Faults diagnosis and identification Identificação e diagnóstico de falhas Intelligent system Motor de indução trifásico Redes neurais artificiais Sistemas inteligentes Three-phase induction motor |
| title_short |
Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes |
| title_full |
Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes |
| title_fullStr |
Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes |
| title_full_unstemmed |
Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes |
| title_sort |
Identificação de falhas em motores de indução trifásicos usando sistemas inteligentes |
| author |
Santos, Fernanda Maria da Cunha |
| author_facet |
Santos, Fernanda Maria da Cunha |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Silva, Ivan Nunes da |
| dc.contributor.author.fl_str_mv |
Santos, Fernanda Maria da Cunha |
| dc.subject.por.fl_str_mv |
Artificial neural networks Faults diagnosis and identification Identificação e diagnóstico de falhas Intelligent system Motor de indução trifásico Redes neurais artificiais Sistemas inteligentes Three-phase induction motor |
| topic |
Artificial neural networks Faults diagnosis and identification Identificação e diagnóstico de falhas Intelligent system Motor de indução trifásico Redes neurais artificiais Sistemas inteligentes Three-phase induction motor |
| description |
Esta tese consiste em desenvolver um sistema de identificação e classificação de falhas em motores de indução trifásico. As falhas analisadas foram simuladas em laboratório e envolvem problemas elétricos, como curto-circuito no estator, e problemas mecânicos, como barras quebradas no rotor. O sistema computacional proposto é formado pela transformada discreta wavelet, pelo cálculo de variáveis estatísticas e por redes neurais artificiais. A partir dos sinais elétricos da corrente do estator, a transformada wavelet produz os coeficientes característicos das falhas, os quais são usados no cálculo das variáveis estatísticas, como a média, root mean square, skewness e kurtosis. Estes valores são transmitidos como dados de entrada para as redes neurais que identificam as falhas e classificam a natureza das mesmas. Por fim, resultados obtidos visam validar a metodologia sugerida, que buscou nos sistemas inteligentes soluções eficazes para diagnosticar falhas em máquinas elétricas. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-03-14 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/18/18153/tde-29042013-114436/ |
| url |
http://www.teses.usp.br/teses/disponiveis/18/18153/tde-29042013-114436/ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1815258551128424448 |